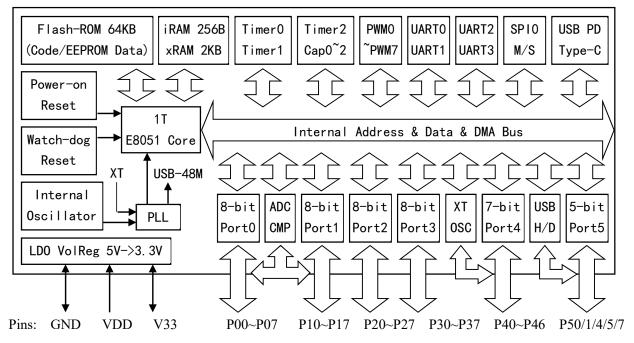
# 8-bit Enhanced USB MCU CH549

Datasheet Version: 1H https://wch-ic.com

## 1. Overview

CH549 is an enhanced E8051 core microcontroller compatible with MCS51 instruction set. 79% of its instructions are single-byte single-cycle instructions, and the average instruction speed is 8 to 15 times faster than that of standard MCS51.

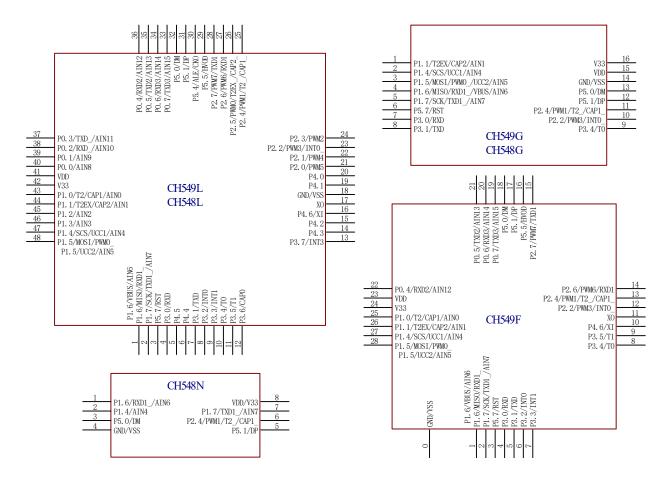

CH549 built-in 64K program memory Flash-ROM, 256byte internal iRAM and 2K byte on-chip xRAM. xRAM support DMA.

CH549 built-in 12-bit ADC, capacitive Touchkey detection, TS, built-in clock, 3 timers and 3-channel signal capture, 8-channel PWM, 4 UARTs, SPI and other functional modules. It supports full-speed and low-speed USB-Host mode and USB-Device mode as well as USB type-C. For complete PD functions, it is recommended to use CH543.

CH548 is the simplified version of CH549, program memory ROM is only 32KB. It only provides UART0 and UART1, others are the same as CH549. For details, directly refer to CH549 manuals and materials.

| Model | Program<br>ROM<br>Boot ROM | xRAM<br>iRAM | Nonvolatile<br>EEPROM | USB host<br>USB<br>device | USB<br>Type-C | Timer | Signal<br>capture | 8-bit<br>PWM | UART | SPI<br>Master<br>/slave | 12-bit<br>ADC | Capacitive<br>Touchkey |
|-------|----------------------------|--------------|-----------------------|---------------------------|---------------|-------|-------------------|--------------|------|-------------------------|---------------|------------------------|
| CH549 | 60KB+3KB                   | 2048         | 11/1                  | Full/ low-                |               | 2     | 2                 | 0            | 4    | 1                       | 16            | 16                     |
| CH548 | 32KB+3KB                   | +256         | 1KB                   | speed                     | Support       | 3     | 3                 | 0            | 2    | 1                       | 16            | 10                     |

The following is the internal block diagram of CH549, for reference only.




## 2. Features

- Core: Enhanced E8051 core, compatible with MCS51 instruction set. 79% of its instructions are single-byte single-cycle instructions, the average instruction speed is 8 ~15 times faster than the standard MCS51, unique XRAM data fast copy instructions, double DPTR pointers.
- ROM: 64KB non-volatile memory Flash-ROM, supporting 10K erasures, can be used entirely for program storage space; or it can be divided into 60KB program storage area and 1KB data storage area EEPROM as well as 3KB boot code BootLoader/ISP program area.
- EEPROM: 1KB EEPROM, divided into 16 independent blocks. It supports single-byte read, single-byte write, block write (1~64 bytes) and block erase (64 bytes). In typical environments, 100K erases are generally supported (unguaranteed).
- OTP: One-time programmable data store OTP has a total of 32 bytes, supporting double-word reading (4 bytes) and single-byte writing.
- RAM: 256-byte internal iRAM, can be used for fast data temporary storage and stack; 2KB on-chip xRAM, can be used for a large number of data temporary storage and DMA direct memory access.
- USB: Built-in USB controller and USB transceiver, support USB-Host mode and USB-Device mode, support USB 2.0 full-speed 12Mbps or low-speed 1.5Mbps. Support up to 64-byte packets, built-in FIFO, DMA.
- USB type-C: Support USB type-C master-slave detection, USB PD power transmission control and 32-bit CRC calculation.
- Timer: 3 timers, the standard MCS51 timer T0/T1/T2.
- Capture: Timer T2 is extended to support 3-channel signal capture.
- PWM: 8-channel PWM output, supporting standard 8-bit data or fast 6-bit data.
- UART: 4 UARTs, UART0 is the standard MCS51 UART; UART1/2/3 has built-in communication baud rate setting register.
- SPI: SPI controller supports Master/Slave mode, built-in FIFO, clock frequency up to half of the system main frequency Fsys, and supports serial data input and output simplex.
- ADC: 16 channel 12-bit A/D converter, it supports multiple combinations of voltage comparisons.
- Touch-Key: 16-channel capacitive Touchkey detection. Each ADC channel supports Touchkey detection.
- TS: Built-in simple temperature sensor.
- GPIO: Support up to 44 GPIO pins (including XI, RST and USB pins), supporting MCS51 compatible quasibi-directional mode, and adds high-resistance input, push-pull output and open-drain output modes, one of which supports 12V high-voltage open-drain output.
- Interrupt: 16 interrupt sources, including 6 interrupts compatible with standard MCS51 (INT0, T0, INT1, T1, UART0, T2), and extended 10 interrupts (SPI0, INT3, USB, ADC/UART2, UART1, PWMX/UART3, GPIO, WDOG), of which GPIO interrupts can be selected from 7 pins.
- Watch-Dog: Based on 8-bit prescaler, supporting timing interrupt.
- Reset: 5 reset signal sources, built-in power-on reset and multi-stage adjustable power supply low-voltage detection reset module, software reset and watchdog overflow reset, optional pin external input reset.
- Clock: Built-in 24MHz clock source, external crystals can be supported by multiplexing GPIO pins, and builtin PLL is used to generate the USB clock and the system clock frequency Fsys of the desired frequency.
- Power: Built-in 5V to 3.3V low dropout voltage regulator for modules such as USB, supporting 5V or 3.3V, even 6V or 2.8V supply voltage.
- Sleep: Low-power sleep, USB, UART0, UART1, SPI0, comparator and some GPIO external wake-up.
- Unique ID number, which supports ID number and check.

## 3. Packages

| Package form | Shaping width |        | Pin spacing |         | Description                      | Order model |
|--------------|---------------|--------|-------------|---------|----------------------------------|-------------|
| LQFP48       | 7*7mm         |        | 0.5mm       | 19.7mil | Low-profile Quad<br>Flat Package | CH549L      |
| QFN28_4×4    | 4*4mm         |        | 0.4mm       | 15.7mil | Quad Flat No-Lead<br>Package     | CH549F      |
| SOP16        | 3.9mm         | 150mil | 1.27mm      | 50mil   | Small Outline<br>Package         | CH549G      |
| LQFP48       | 7*7mm         |        | 0.5mm       | 19.7mil | Low-profile Quad<br>Flat Package | CH548L      |
| SOP16        | 3.9mm         | 150mil | 1.27mm      | 50mil   | Small Outline<br>Package         | CH548G      |
| SOP8         | 3.9mm         | 150mil | 1.27mm      | 50mil   | Small Outline<br>Package         | CH548N      |



### 4. Pin Definitions

|       | Pin No. |          | Pin               | Other functions          |                                                            |
|-------|---------|----------|-------------------|--------------------------|------------------------------------------------------------|
| SOP16 | QFN28   | LQFP48   | name              | (Left function is the    | Other function description                                 |
| 50110 | QIN20   | LQII 40  | name              | top priority.)           |                                                            |
|       |         |          |                   |                          | I/O power input and the external power input of internal   |
| 15    | 23      | 41       | VDD               | VCC                      | USB power regulator require an external 0.1uF power        |
|       |         |          |                   |                          | decoupling capacitor.                                      |
|       |         |          |                   |                          | Internal USB power regulator output and internal USB       |
|       |         |          |                   |                          | power input.                                               |
| 16    | 24      | 42       | V33               | V3                       | When the power supply voltage is less than 3.6V, connect   |
|       |         |          |                   |                          | the VDD input external power supply.                       |
|       |         |          |                   |                          | When the power supply voltage is greater than 3.6V,        |
| 14    | 0       | 18       | CND               | VSS                      | external 0.1uF power supply decoupling capacitor. Ground   |
|       |         | 40       | GND               |                          | Gfound                                                     |
| -     | -       | 40<br>39 | P0.0<br>P0.1      | AIN8<br>AIN9             |                                                            |
| -     | -       | 39       | P0.1<br>P0.2      |                          | AIN8~AIN15: 8 channel ADC analog signal / touch key        |
| -     | -       | 38<br>37 | P0.2<br>P0.3      | RXD_/AIN10<br>TXD /AIN11 | input.                                                     |
| -     | - 22    | 36       | P0.3<br>P0.4      | RXD2/AIN12               | RXD_, TXD_: RXD, TXD pin mapping.                          |
| -     | 22      | 35       | P0.4              | TXD2/AIN12               | RXD2, TXD2: UART2 serial data input, serial data output.   |
| -     | 20      | 33       | P0.5<br>P0.6      | RXD3/AIN14               | RXD3, TXD3: UART3 serial data input, serial data output.   |
| -     | 19      | 33       | P0.0<br>P0.7      | TXD3/AIN15               |                                                            |
| -     | 25      | 43       | P0.7<br>P1.0      | T2/CAP1/AIN0             | AINO to AINZ & channel ADC analog signal/tough logy        |
| - 1   | 23      | 43       | P1.0<br>P1.1      | T2EX/CAP2/AIN1           | AIN0 to AIN7: 8-channel ADC analog signal/touch key input. |
|       | -       | 44       | P1.2              | AIN2                     | T2: External count input/clock output for Timer/Counter 2. |
| -     | -       | 45       | P1.2              | AIN2<br>AIN3             | T2EX: Timer/Counter2 reload/capture input.                 |
| 2     | - 27    | 40       | P1.4              | SCS/UCC1/AIN4            | CAP1, CAP2: Timer/Counter 2 capture inputs 1 and 2.        |
| 2     | 21      | 4/       | Г 1. <del>4</del> | MOSI/PWM0 /UC            | SCS, MOSI, MISO, SCK: SPI0 interface, SCS is the chip      |
| 3     | 28      | 48       | P1.5              | C2/AIN5                  | select input, MOSI is the host output/slave input, MISO is |
|       |         |          |                   | MISO/RXD1 /VBU           | the host input/slave output, SCK is the serial clock.      |
| 4     | 1       | 1        | P1.6              | S/AIN6                   | UCC1, UCC2: USB type-C bidirectional configuration         |
|       |         |          |                   |                          | channel.                                                   |
| -     | 2       | 2        | D1 7              |                          | VBUS: USB type-C bus voltage detection input.              |
| 5     | 2       | 2        | P1.7              | SCK/TXD1_/AIN7           | PWM0_, RXD1_, TXD1_: PWM0/RXD1/TXD1 pin                    |
|       |         |          |                   |                          | mapping.                                                   |
| -     | -       | 21       | P2.0              | PWM5                     |                                                            |
| -     | -       | 22       | P2.1              | PWM4                     | PWM0~PWM7: 8 channel PWM output.                           |
| 10    | 12      | 23       | P2.2              | PWM3/INT0_               | INT0 : INT0 pin mapping.                                   |
| -     | -       | 24       | P2.3              | PWM2                     | T2 /CAP1 : T2/CAP1 pin mapping.                            |
| 11    | 13      | 25       | P2.4              | PWM1/T2_/CAP1_           | T2EX /CAP2 : T2EX/CAP2 pin mapping.                        |
| -     | -       | 26       | P2.5              | PWM0/T2EX_/CAP           | RXD1, TXD1: UART1 serial data input, serial data output.   |
|       |         |          |                   | 2                        |                                                            |
| -     | 14      | 27       | P2.6              | PWM6/RXD1                |                                                            |

|    | ,  |    |      |           |                                                                       |  |  |  |  |
|----|----|----|------|-----------|-----------------------------------------------------------------------|--|--|--|--|
| -  | 15 | 28 | P2.7 | PWM7/TXD1 |                                                                       |  |  |  |  |
| 7  | 4  | 4  | P3.0 | RXD       |                                                                       |  |  |  |  |
| 8  | 5  | 7  | P3.1 | TXD       |                                                                       |  |  |  |  |
| -  | 6  | 8  | P3.2 | INT0      | RXD, TXD: UART0 serial data input, serial data output.                |  |  |  |  |
| -  | 7  | 9  | P3.3 | INT1      | INT0, INT1: External interrupt 0, external interrupt 1 input.         |  |  |  |  |
| 9  | 8  | 10 | P3.4 | Т0        | T0, T1: Timer0, Timer1 external input.                                |  |  |  |  |
| -  | 9  | 11 | P3.5 | T1        | CAP0: Timer/counter 2 capture input 0.<br>INT3: External interrupt 3. |  |  |  |  |
| -  | -  | 12 | P3.6 | CAP0      | IN 13. External interrupt 5.                                          |  |  |  |  |
| -  | -  | 13 | P3.7 | INT3      |                                                                       |  |  |  |  |
| -  | -  | 20 | P4.0 |           |                                                                       |  |  |  |  |
| -  | -  | 19 | P4.1 |           |                                                                       |  |  |  |  |
| -  | -  | 15 | P4.2 |           |                                                                       |  |  |  |  |
| -  | -  | 14 | P4.3 |           |                                                                       |  |  |  |  |
| -  | -  | 6  | P4.4 |           | XI, XO: External crystal oscillation input, inverse output.           |  |  |  |  |
| -  | -  | 5  | P4.5 |           |                                                                       |  |  |  |  |
| -  | 10 | 16 | P4.6 | XI        |                                                                       |  |  |  |  |
| -  | 11 | 17 | XO   |           |                                                                       |  |  |  |  |
| 13 | 18 | 32 | P5.0 | DM/UDM    | DM, DP: The D-and D+ signal end of the USB host or USB                |  |  |  |  |
| 12 | 17 | 21 | D5 1 |           | device. The resistors are fully built-in, so it is recommended        |  |  |  |  |
| 12 | 17 | 31 | P5.1 | DP/UDP    | that the external resistors are no longer in series.                  |  |  |  |  |
| -  | -  | 30 | P5.4 | ALE/CKO   | ALE/CKO: Pseudo-address latch signal output or clock                  |  |  |  |  |
|    | 16 | 29 | P5.5 | HVOD      | output.                                                               |  |  |  |  |
|    | 10 | 27 | 13.3 |           | HVOD: Support 12V high voltage open-drain output.                     |  |  |  |  |
| 6  | 3  | 3  | P5.7 | RST       | External reset input, built-in pull-down resistor.                    |  |  |  |  |

*Note:* CH548N VDD and V33 have been shorted internally, VDD can only 3V~3.6V when using USB, 2.7V~6.5V when USB is not used.

## 5. Special Function Register

The following abbreviations may be used to describe registers in this manual:

| Acronym | Description                                          |
|---------|------------------------------------------------------|
| RO      | Indicate access type: read-only                      |
| WO      | Indicate access type: write-only, invalid value read |
| RW      | Indicate access type: readable and writable          |
| Н       | End with it indicates hexadecimal number.            |
| В       | End with it indicates binary number.                 |

### 5.1 SFR Introduction and Address Distribution

CH549 uses special function registers SFR and xSFR to control, manage devices and set operating modes. SFR occupies the 80h-FFh address range of internal data storage space and can only be accessed through direct address instructions. Registers with addresses of x0h or x8h can be addressed by bits, so as to avoid modifying the values of other bits when accessing a specific bit; registers with non-8x addresses can only be accessed by bytes.

Some SFR can write data only in safe mode, but read-only in non-safe mode, such as GLOBAL\_CFG,

### CLOCK\_CFG, WAKE\_CTRL, POWER\_CFG.

| Some SFR have one or more aliases, for example: SPI0_CK_SE/SPI0_S_PRE、UDEV_CTRL/UHOST_CTRL、 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|--|--|
| UEP1_CTRL/UH_SETUP,                                                                         | UEP2_CTRL/UH_RX_CTRL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UEP2_T_LEN/UH_EP_PID,   |  |  |  |  |  |  |  |  |
| UEP3_CTRL/UH_TX_CTRL,                                                                       | UEP3_T_LEN/UH_TX_LEN,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UEP2_3_MOD/UH_EP_MOD,   |  |  |  |  |  |  |  |  |
| UEP2_DMA_H/UH_RX_DMA_H,                                                                     | UEP2_DMA_L/UH_RX_DMA_L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UEP2_DMA/UH_RX_DMA,     |  |  |  |  |  |  |  |  |
| UEP3_DMA_H/UH_TX_DMA_H,                                                                     | UEP3_DMA_L/UH_TX_DMA_L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UEP3_DMA/UH_TX_DMA,     |  |  |  |  |  |  |  |  |
| ROM_ADDR_L/ROM_DATA_LL,                                                                     | ROM_ADDR_H/ROM_DATA_LH, ROM_ADDR_H/ROM_DATA_LH, ROM_ADDR_H/ROM_DATA_LH, ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/ROM_ADDR_H/R | DM_DATA_HL/ROM_DAT_BUF, |  |  |  |  |  |  |  |  |
| ROM_DATA_HH/ROM_BUF_MOD                                                                     | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |  |  |  |  |  |  |  |  |

Some addresses correspond to multiple independent SFR, for example: SAFE\_MOD/CHIP\_ID, ROM\_CTRL/ROM\_STATUS.

CH549 contains all the registers of the 8051 standard SFR, while adding other device control registers. SFR details are shown in the table below.

| SFR      | 0/8            | 1/9                             | 2/A                   | 3/B                             | 4/C                               | 5/D                               | 6/E                               | 7/F                               |
|----------|----------------|---------------------------------|-----------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
| 0xF8     | SPI0_STAT      | SPI0_DATA                       | SPI0_CTRL             | SPI0_CK_SE<br>SPI0_S_PRE        | SPI0_SETUP                        | A_INV                             | RESET_KEE<br>P                    | WDOG_CO<br>UNT                    |
| 0xF0     | В              | TKEY_CTR<br>L                   | ADC_CTRL              | ADC_CFG                         | ADC_DAT_L                         | ADC_DAT_<br>H                     | ADC_CHAN                          | ADC_PIN                           |
| 0xE8     | IE_EX          | IP_EX                           | UEP4_1_MO<br>D        | UEP2_3_MO<br>D<br>UH_EP_MO<br>D | UEP0_DMA<br>_L                    | UEP0_DMA<br>_H                    | UEP1_DMA<br>_L                    | UEP1_DMA<br>_H                    |
| 0xE0     | ACC            | USB_INT_E<br>N                  | USB_CTRL              | USB_DEV_<br>AD                  | UEP2_DMA<br>_L<br>UH_RX_DM<br>A_L | UEP2_DMA<br>_H<br>UH_RX_DM<br>A_H | UEP3_DMA<br>_L<br>UH_TX_DM<br>A_L | UEP3_DMA<br>_H<br>UH_TX_DM<br>A_H |
| 0xD<br>8 | USB_INT_F<br>G | USB_INT_S<br>T                  | USB_MIS_S<br>T        | USB_RX_LE<br>N                  | UEP0_CTRL                         | UEP0_T_LE<br>N                    | UEP4_CTRL                         | UEP4_T_LE<br>N                    |
| 0xD<br>0 | PSW            | UDEV_CTR<br>L<br>UHOST_CT<br>RL | UEP1_CTRL<br>UH_SETUP | UEP1_T_LE<br>N                  | UEP2_CTRL<br>UH_RX_CT<br>RL       | UEP2_T_LE<br>N<br>UH_EP_PID       | UEP3_CTRL<br>UH_TX_CT<br>RL       | UEP3_T_LE<br>N<br>UH_TX_LE<br>N   |
| 0xC<br>8 | T2CON          | T2MOD                           | RCAP2L                | RCAP2H                          | TL2                               | TH2                               | T2CAP1L                           | T2CAP1H                           |
| 0xC<br>0 | Р4             | T2CON2                          | P4_MOD_O<br>C         | P4_DIR_PU                       | P0_MOD_O<br>C                     | P0_DIR_PU                         | T2CAP0L                           | Т2САР0Н                           |
| 0xB<br>8 | IP             | CLOCK_CF<br>G                   | POWER_CF<br>G         |                                 | SCON1                             | SBUF1                             | SBAUD1                            | SIF1                              |
| 0xB<br>0 | Р3             | GLOBAL_C<br>FG                  | GPIO_IE               | INTX                            | SCON2                             | SBUF2                             | SBAUD2                            | SIF2                              |
| 0xA<br>8 | IE             | WAKE_CTR<br>L                   | PIN_FUNC              | Р5                              | SCON3                             | SBUF3                             | SBAUD3                            | SIF3                              |
| 0xA<br>0 | Р2             | SAFE_MOD<br>CHIP_ID             | XBUS_AUX              | PWM_DATA<br>3                   | PWM_DATA<br>4                     | PWM_DATA<br>5                     | PWM_DATA<br>6                     | PWM_DATA<br>7                     |

Table 5.1 Table of special function registers

| 0x98 | SCON | SBUF           | PWM_DATA 2    | PWM_DATA<br>1 | PWM_DATA<br>0                     | PWM_CTRL                          | PWM_CK_S<br>E                      | PWM_CTRL<br>2                      |
|------|------|----------------|---------------|---------------|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|
| 0x90 | P1   | USB_C_CTR<br>L | P1_MOD_O<br>C | P1_DIR_PU     | P2_MOD_O<br>C                     | P2_DIR_PU                         | P3_MOD_O<br>C                      | P3_DIR_PU                          |
| 0x88 | TCON | TMOD           | TL0           | TL1           | TH0                               | TH1                               | ROM_DATA<br>_HL<br>ROM_DAT_<br>BUF | ROM_DATA<br>_HH<br>ROM_BUF_<br>MOD |
| 0x80 | P0   | SP             | DPL           | DPH           | ROM_ADDR<br>_L<br>ROM_DATA<br>_LL | ROM_ADDR<br>_H<br>ROM_DATA<br>_LH | ROM_CTRL<br>ROM_STAT<br>US         | PCON                               |

Note:

(1) The red text indicates that it can be addressed by bit;

(2) The following is the description of the color box

| - | Register address                          |
|---|-------------------------------------------|
|   | SPI0 related register                     |
|   | ADC related register                      |
|   | USB related register                      |
|   | Timing / counter 2 related register       |
|   | Port setting related register             |
|   | PWMX related register                     |
|   | UART1/2/3 related register                |
|   | Timing / counter 0 and 1 related register |
|   | Flash-ROM related register                |

### 5.2 SFR Classification and Reset Value

Table 5.2 Description and reset value of SFR and xSFR

| Function          | Name       | Address | Description                                       | Reset value |
|-------------------|------------|---------|---------------------------------------------------|-------------|
|                   | В          | F0h     | B register                                        | 0000 0000b  |
|                   | ACC        | E0h     | Accumulator                                       | 0000 0000b  |
|                   | A_INV      | FDh     | High and low inverted value of accumulator        | 0000 0000Ь  |
|                   | PSW        | D0h     | Program status register                           | 0000 0000b  |
|                   |            |         | Global configuration register (CH549 Bootloader)  | 1110 0000Ь  |
|                   | CLODAL CEC | B1h     | Global configuration register (CH549 application) | 1100 0000b  |
| System setting    | GLOBAL_CFG |         | Global configuration register (CH548 Bootloader)  | 1010 0000b  |
| related registers |            |         | Global configuration register (CH548 application) | 1000 0000b  |
|                   |            | A 11    | CH549 chip ID identification code (read-only)     | 0100 1001b  |
|                   | CHIP_ID    | Alh     | CH548 chip ID identification code (read-only)     | 0100 1000b  |
|                   | SAFE_MOD   | Alh     | Safe mode control register (write-only)           | 0000 0000Ь  |
|                   | DPH        | 83h     | Data address pointer high 8 bits                  | 0000 0000b  |
|                   | DPL        | 82h     | Data address pointer low 8 bits                   | 0000 0000b  |
|                   | DPTR       | 82h     | 16-bit SFR consists of DPL and DPH                | 0000h       |

|                                                        | SP          | 81h | Stack pointer                                                     | 0000 0111b |
|--------------------------------------------------------|-------------|-----|-------------------------------------------------------------------|------------|
|                                                        | WDOG_COUNT  | FFh | Watchdog count register                                           | 0000 0000b |
|                                                        | RESET_KEEP  | FEh | Reset keep register (power on reset)                              | 0000 0000b |
| Clock, sleep and<br>power control<br>related registers | POWER_CFG   | BAh | Power management configuration register                           | 0000 0xxxb |
|                                                        | CLOCK_CFG   | B9h | System clock configuration register                               | 1000 0011b |
|                                                        | WAKE_CTRL   | A9h | Wake-up control register                                          | 0000 0000b |
|                                                        | PCON        | 87h | Power control register (power on reset)                           | 0001 0000b |
|                                                        | IP_EX       | E9h | Extended interrupt priority control register                      | 0000 0000b |
|                                                        | IE_EX       | E8h | Extended interrupt enable register                                | 0000 0000b |
| Interrupt control                                      | GPIO_IE     | C7h | GPIO interrupt enable register                                    | 0000 0000b |
| related registers                                      | IP          | B8h | Interrupt priority control register                               | 0000 0000Ь |
|                                                        | INTX        | B3h | Extended external interrupt control register                      | 0000 0000b |
|                                                        | IE          | A8h | Interrupt enable register                                         | 0000 0000Ь |
|                                                        | ROM_DATA_HH | 8Fh | High bytes of high words in flash-ROM data register (read-only)   | xxxx xxxxb |
|                                                        | ROM_DATA_HL | 8Eh | Low bytes of high words in flash-ROM data<br>register (read-only) | xxxx xxxxb |
|                                                        | ROM_DATA_HI | 8Eh | 16-bit SFR consists of ROM_DATA_HL and<br>ROM DATA HH             | xxxxh      |
|                                                        | ROM_BUF_MOD | 8Fh | Buffer mode register for flash-ROM erase and write operations     | xxxx xxxxb |
|                                                        | ROM_DAT_BUF | 8Eh | Data buffer register for flash-ROM erase and write operations     | xxxx xxxxb |
| Flash-ROM                                              | ROM_STATUS  | 86h | flash-ROM status register (read only)                             | 0000 0000Ь |
| related registers                                      | ROM_CTRL    | 86h | flash-ROM control register (write only)                           | 0000 0000b |
|                                                        | ROM_ADDR_H  | 85h | flash-ROM address register high                                   | xxxx xxxxb |
|                                                        | ROM_ADDR_L  | 84h | flash-ROM address register low                                    | xxxx xxxxb |
|                                                        | ROM_ADDR    | 84h | 16-bit SFR consists of ROM_ADDR_L and ROM ADDR H                  | xxxxh      |
|                                                        | ROM_DATA_LH | 85h | High bytes of low words in flash-ROM data register (read-only)    | xxxx xxxxb |
|                                                        | ROM_DATA_LL | 84h | Low bytes of low words in flash-ROM data register (read-only)     | xxxx xxxxb |
|                                                        | ROM_DATA_LO | 84h | 16-bit SFR consists of ROM_DATA_LL and ROM_DATA_LH                | xxxxh      |
|                                                        | XBUS_AUX    | A2h | External bus auxiliary setting register                           | 0000 0000Ъ |
|                                                        | PIN_FUNC    | AAh | Pin function selection register                                   | 0000 0000b |
| Port setting<br>related registers                      | P0_DIR_PU   | C5h | P0 port direction control and pull-up enable register             | 1111 1111b |
|                                                        | P0_MOD_OC   | C4h | P0 port output mode register                                      | 1111 1111b |
|                                                        | P4_DIR_PU   | C3h | P4 port direction control and pull-up enable register             | 1111 1111b |
|                                                        | P4_MOD_OC   | C2h | P4 port output mode register                                      | 1111 1111b |

|                        | 1         | 1                                 | · · · · · · · · · · · · · · · · · · ·                 | 1          |
|------------------------|-----------|-----------------------------------|-------------------------------------------------------|------------|
|                        | P3_DIR_PU | 97h                               | P3 port direction control and pull-up enable register | 1111 1111b |
|                        | P3_MOD_OC | 96h                               | P3 port output mode register                          | 1111 1111b |
|                        | P2_DIR_PU | 95h                               | P2 port direction control and pull-up enable register | 1111 1111b |
|                        | P2_MOD_OC | 94h                               | P2 port output mode register                          | 1111 1111b |
|                        | P1_DIR_PU | 93h                               | P1 port direction control and pull-up enable register | 1111 1111b |
|                        | P1_MOD_OC | 92h                               | P1 port output mode register                          | 1111 1111b |
|                        | P5        | ABh                               | P5 port input and output register                     | 0010 0000b |
|                        | P4        | C0h                               | P4 port input and output register                     | 1111 1111b |
|                        | P3        | B0h                               | P3 port input and output register                     | 1111 1111b |
|                        | P2        | A0h                               | P2 port input and output register                     | 1111 1111b |
|                        | P1        | 90h                               | P1 port input and output register                     | 1111 1111b |
|                        | P0        | 80h                               | P0 port input and output register                     | 1111 1111b |
|                        | TH1       | 8Dh                               | Timer1 count high                                     | xxxx xxxxb |
| Timinalaguatan         | TH0       | 8Ch                               | Timer0 count high                                     | xxxx xxxxb |
| Timing/counter 0       | TL1       | 8Bh                               | Timer1 count low                                      | xxxx xxxxb |
| and 1 related          | TL0       | 8Ah                               | Timer0 count low                                      | xxxx xxxxb |
| registers              | TMOD 89h  |                                   | Timer0/1 mode register                                | 0000 0000b |
|                        | TCON      | CON 88h Timer0/1 control register |                                                       | 0000 0000b |
| UART0                  | SBUF      | 99h                               | UART0 data register                                   | xxxx xxxxb |
| related registers      | SCON      | 98h                               | UART0 control register                                | 0000 0000b |
|                        | Т2САР1Н   | CFh                               | Timer2 captures 1 high bytes of data (read-only)      | xxxx xxxxb |
|                        | T2CAP1L   | CEh                               | Timer2 captures 1 low bytes of data (read-only)       | xxxx xxxxb |
|                        | T2CAP1    | CEh                               | 16-bit SFR consists of T2CAP1L and T2CAP1H            | xxxxh      |
|                        | TH2       | CDh                               | Timer2 counter high                                   | 0000 0000b |
|                        | TL2       | CCh                               | Timer2 counter low                                    | 0000 0000b |
|                        | T2COUNT   | CCh                               | 16-bit SFR consists of T2CAP2L and T2CAP2H            | 0000h      |
| <b>T:</b> ( ) <b>A</b> | RCAP2H    | CBh                               | Count reload/capture 2 data register high             | 0000 0000b |
| Timing/counter 2       | RCAP2L    | CAh                               | Count reload/capture 2 data register low              | 0000 0000b |
| related registers      | RCAP2     | CAh                               | 16-bit SFR consists of RCAP2L and RCAP2H              | 0000h      |
|                        | T2MOD     | C9h                               | Timer2 mode register                                  | 0000 0000b |
|                        | T2CON     | C8h                               | Timer2 control register                               | 0000 0000b |
|                        | Т2САР0Н   | C7h                               | Timer2 captures 0 data high (read-only)               | xxxx xxxxb |
|                        | T2CAP0L   | C6h                               | Timer2 captures 0 data low (read-only)                | xxxx xxxxb |
|                        | T2CAP0    | C6h                               | 16-bit SFR consists of T2CAP0L and T2CAP0H            | xxxxh      |
|                        | T2CON2    | C1h                               | Timer2 extended control register                      | 0000 0000b |
|                        | PWM_DATA7 | A7h                               | PWM7 data register                                    | xxxx xxxxb |
| D112 6-                | PWM_DATA6 | A6h                               | PWM6 data register                                    | xxxx xxxxb |
| PWMX                   | PWM_DATA5 | A5h                               | PWM5 data register                                    | xxxx xxxxb |
| related registers      | PWM_DATA4 | A4h                               | PWM4 data register                                    | xxxx xxxxb |
|                        | PWM_DATA3 | A3h                               | PWM3 data register                                    | xxxx xxxxb |
|                        |           |                                   | -                                                     |            |

|                            | PWM_CTRL2  | 9Fh | PWM extended control register                                   | 0000 0000b |
|----------------------------|------------|-----|-----------------------------------------------------------------|------------|
|                            | PWM_CK_SE  | 9Eh | PWM clock frequency division setting register                   | 0000 0000b |
|                            | PWM_CTRL   | 9Dh | PWM control register                                            | 0000 0010b |
|                            | PWM_DATA0  | 9Ch | PWM0 data register                                              | xxxx xxxxb |
|                            | PWM_DATA1  | 9Bh | PWM1 data register                                              | xxxx xxxxb |
|                            | PWM_DATA2  | 9Ah | PWM2 data register                                              | xxxx xxxxb |
|                            | SPI0_SETUP | FCh | SPI0 setting register                                           | 0000 0000b |
|                            | SPI0_S_PRE | FBh | SPI0 slave mode preset data register                            | 0010 0000b |
| SPI0                       | SPI0_CK_SE | FBh | SPI0 clock frequency division setting register                  | 0010 0000b |
| related registers          | SPI0_CTRL  | FAh | SPI0 control register                                           | 0000 0010b |
|                            | SPI0_DATA  | F9h | SPI0 data transceiver register                                  | xxxx xxxxb |
|                            | SPI0_STAT  | F8h | SPI0 status register                                            | 0000 1000b |
|                            | SIF1       | BFh | UART1 interrupt status register                                 | 0000 0000Ь |
| UART1                      | SBAUD1     | BEh | UART1 baud rate setting register                                | xxxx xxxxb |
| related registers          | SBUF1      | BDh | UART1 data register                                             | xxxx xxxxb |
|                            | SCON1      | BCh | UART1 control register                                          | 0100 0000b |
|                            | SIF2       | B7h | UART2 interrupt status register                                 | 0000 0000b |
| UART2                      | SBAUD2     | B6h | UART2 baud rate setting register                                | xxxx xxxxb |
| related registers          | SBUF2      | B5h | UART2 data register                                             | xxxx xxxxb |
|                            | SCON2      | B4h | UART2 control register                                          | 0000 0000b |
|                            | SIF3       | AFh | UART3 interrupt status register                                 | 0000 0000b |
| UART3                      | SBAUD3     | AEh | UART3 baud rate setting register                                | xxxx xxxxb |
| related registers          | SBUF3      | ADh | UART3 data register                                             | xxxx xxxxb |
|                            | SCON3      | ACh | UART3 control register                                          | 0000 0000Ь |
|                            | ADC PIN    | F7h | ADC pin digital input control register                          | 0000 0000b |
|                            | ADC CHAN   | F6h | ADC analog signal channel selection register                    | 0000 0000b |
|                            | ADC DAT H  | F5h | High bytes of ADC result data (read only)                       | 0000 xxxxb |
|                            | ADC DAT L  | F4h | Low bytes of ADC result data (read only)                        | xxxx xxxxb |
| ADC/TKEY related registers | ADC_DAT    | F4h | 16-bit SFR consists of ADC_DAT_L and ADC DAT H                  | 0xxxh      |
| 6                          | ADC CFG    | F3h | ADC configuration register                                      | 0000 0000Ь |
|                            | ADC CTRL   | F2h | ADC control and status register                                 | x000 000xb |
|                            | TKEY_CTRL  | F1h | Touch button charging pulse width control register (write only) | 0000 0000Ъ |
|                            | UEP1 DMA H | EFh | Endpoint 1 buffer start address high byte                       | 0000 0xxxb |
|                            | UEP1 DMA L | EEh | Endpoint 1 buffer start address low byte                        | xxxx xxxxb |
|                            | UEP1_DMA   | EEh | 16-bit SFR consists of UEP1_DMA_L and UEP1_DMA_H                | 0xxxh      |
| USB                        | UEP0 DMA H | EDh | Endpoint 0/4 buffer start address high byte                     | 0000 0xxxb |
| related registers          | UEPO DMA L | ECh | Endpoint 0/4 buffer start address low byte                      | xxxx xxxxb |
|                            | UEP0_DMA   | ECh | 16-bit SFR consists of UEP0_DMA_L and UEP0_DMA_H                | 0xxxh      |
|                            | UEP2 3 MOD | EBh | Endpoint 2/3 mode control register                              | 0000 0000Ъ |



| UH_EP_MOD   | EBh | USB host endpoint mode control register            | 0000 0000b |
|-------------|-----|----------------------------------------------------|------------|
| UEP4_1_MOD  | EAh | Endpoint 1/4 mode control register                 | 0000 0000b |
| UEP3_DMA_H  | E7h | Endpoint 3 buffer start address high byte          | 0000 0xxxb |
| UEP3_DMA_L  | E6h | Endpoint 3 buffer start address low byte           | xxxx xxxxb |
| UEP3_DMA    | E6h | 16-bit SFR consists of UEP3_DMA_L and UEP3_DMA_H   | 0xxxh      |
| UH_TX_DMA_H | E7h | USB host transmit buffer start address high byte   | 0000 0xxxb |
| UH_TX_DMA_L | E6h | USB host transmit buffer start address low byte    | xxxx xxxxb |
| UH_TX_DMA   | E6h | 16-bit SFR consists of UH_TX_DMA_L and UH_TX_DMA_H | 0xxxh      |
| UEP2_DMA_H  | E5h | Endpoint 2 buffer start address high byte          | 0000 0xxxb |
| UEP2_DMA_L  | E4h | Endpoint 2 buffer start address low byte           | xxxx xxxxb |
| UEP2_DMA    | E4h | 16-bit SFR consists of UEP2_DMA_L and UEP2_DMA_H   | 0xxxh      |
| UH_RX_DMA_H | E5h | USB host receive buffer start address high byte    | 0000 0xxxb |
| UH_RX_DMA_L | E4h | USB host receive buffer start address low byte     | xxxx xxxxb |
| UH_RX_DMA   | E4h | 16-bit SFR consists of UH_RX_DMA_L and UH_RX_DMA_H | 0xxxh      |
| USB_DEV_AD  | E3h | USB device address register                        | 0000 0000b |
| USB_CTRL    | E2h | USB control register                               | 0000 0110b |
| USB_INT_EN  | E1h | USB interrupt enable register                      | 0000 0000b |
| UEP4_T_LEN  | DFh | Endpoint 4 transmit length register                | 0xxx xxxxb |
| UEP4_CTRL   | DEh | Endpoint 4 control register                        | 0000 0000b |
| UEP0_T_LEN  | DDh | Endpoint 0 transmit length register                | 0xxx xxxxb |
| UEP0_CTRL   | DCh | Endpoint 0 control register                        | 0000 0000b |
| USB_RX_LEN  | DBh | USB receive length register (read-only)            | 0xxx xxxxb |
| USB_MIS_ST  | DAh | USB miscellaneous status Register (read-only)      | xx10 1000b |
| USB_INT_ST  | D9h | USB interrupt status register (read-only)          | 00xx xxxxb |
| USB_INT_FG  | D8h | USB interrupt flag register                        | 0010 0000b |
| UEP3_T_LEN  | D7h | Endpoint 3 transmit length register                | 0xxx xxxxb |
| UH_TX_LEN   | D7h | USB host transmit length register                  | 0xxx xxxxb |
| UEP3_CTRL   | D6h | Endpoint 3 control register                        | 0000 0000b |
| UH_TX_CTRL  | D6h | USB host transmit endpoint control register        | 0000 0000b |
| UEP2_T_LEN  | D5h | Endpoint 2 transmit length register                | 0000 0000b |
| UH_EP_PID   | D5h | USB host token setting register                    | 0000 0000b |
| UEP2_CTRL   | D4h | Endpoint 2 control register                        | 0000 0000b |
| UH_RX_CTRL  | D4h | USB host receive endpoint control register         | 0000 0000Ъ |
| UEP1_T_LEN  | D3h | Endpoint 2 transmit length register                | 0xxx xxxxb |
| UEP1_CTRL   | D2h | Endpoint 1 control register                        | 0000 0000b |
| UH_SETUP    | D2h | USB host auxiliary setting register                | 0000 0000b |
| UDEV_CTRL   | D1h | USB device port control register                   | 00xx 0000b |
| UHOST_CTRL  | D1h | USB host port control register                     | 00xx 0000b |
| USB C CTRL  | 91h | USB type-C configuration channel control           | 0000 0000Ъ |



|  | register |  |
|--|----------|--|
|--|----------|--|

### 5.3 General-purpose 8051 Register

Table 5.3.1 List of general-purpose 8051 registers

| Name       | Address | Description                                       | Reset value |
|------------|---------|---------------------------------------------------|-------------|
| A_INV      | FDh     | High and low inverted value of accumulator        | 00h         |
| В          | F0h     | B register                                        | 00h         |
| A, ACC     | E0h     | Accumulator                                       | 00h         |
| PSW        | D0h     | Program status register                           | 00h         |
|            |         | Global configuration register (CH549 Bootloader)  | E0h         |
|            | B1h     | Global configuration register (CH549 application) | C0h         |
| GLOBAL_CFG |         | Global configuration register (CH548 Bootloader)  | A0h         |
|            |         | Global configuration register (CH548 application) | 80h         |
|            | A 11.   | CH549 chip ID identification code (read-only)     | 49h         |
| CHIP_ID    | Alh     | CH548 chip ID identification code (read-only)     | 48h         |
| SAFE_MOD   | Alh     | Safe mode control register (write-only)           | 00h         |
| PCON       | 87h     | Power control register (power on reset)           | 10h         |
| DPH        | 83h     | Data address pointer high 8 bits                  | 00h         |
| DPL        | 82h     | Data address pointer low 8 bits                   | 00h         |
| DPTR       | 82h     | 16-bit SFR consists of DPL and DPH                | 0000h       |
| SP         | 81h     | Stack pointer                                     | 07h         |

### B Register (B):

| Bit   | Name | Access | Description                                                                                   | Reset value |
|-------|------|--------|-----------------------------------------------------------------------------------------------|-------------|
| [7:0] | В    | RW     | Arithmetic register, mainly used for multiplication and division operations, bit-addressable. | 00h         |

#### A accumulator (A, ACC):

| ſ | Bit   | Name  | Access | Description                                 | Reset value |
|---|-------|-------|--------|---------------------------------------------|-------------|
|   | [7:0] | A/ACC | RW     | Arithmetic accumulator, bitwise addressable | 00h         |

### Program status register (PSW):

| Bit | Name | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Reset value |
|-----|------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | СҮ   | RW     | Carry mark: When performing arithmetic and logical operation<br>instructions, it is used to record the carry or borrow of the highest<br>bit; when performing an 8-bit addition operation, the highest bit<br>carries, the position is otherwise cleared; when performing an 8-<br>bit subtraction operation, if it is borrowed, the position is<br>otherwise cleared; the logic instruction can make the position or<br>zero. | 0           |
| 6   | AC   | RW     | Auxiliary carry mark bit: When recording the addition and subtraction operation, there are carry or borrow from the lower 4                                                                                                                                                                                                                                                                                                    | 0           |

|   |     |    | bits to the higher 4 bits, AC setting, otherwise zero                |   |
|---|-----|----|----------------------------------------------------------------------|---|
| 5 | F0  | RW | Bit-addressable universal flag bit 0: The user can define it by      | 0 |
| 3 | го  |    | himself and can be cleared or set by software.                       | 0 |
| 4 | RS1 | RW | Register bank selection bit high bit                                 | 0 |
| 3 | RS0 | RW | Register bank selection bit low bit                                  | 0 |
|   |     |    | Overflow flag bit: When the addition and subtraction operation,      |   |
| 2 | OV  | RW | the result of the operation exceeds 8 binary digits, then OV is set  | 0 |
|   |     |    | to 1, and the flag overflows, otherwise 0                            |   |
| 1 | F1  | RW | Bit-addressable universal flag bit 1: The user can define it and can | 0 |
| 1 | 1,1 |    | be zeroed or set by software                                         | 0 |
|   |     |    | Parity flag bit: Record the parity of 1 in accumulator An after      |   |
| 0 | Р   | RO | instruction execution, odd 1 means P setting, even 1 means P clear   | 0 |
|   |     |    | zero                                                                 |   |

The state of the processor is stored in the state register PSW, and PSW supports bit-by-bit addressing. The status word includes carry flag bits, auxiliary carry flag bits for BCD code processing, parity flag bits, overflow flag bits, and RS0 and RS1 for working register group selection. The area where the working register group is located can be accessed directly or indirectly.

Table 5.3.2 RS1 and RS0 operating register group selection table

| RS1 | RS0 | Operating register group |
|-----|-----|--------------------------|
| 0   | 0   | 0 group (00h-07h)        |
| 0   | 1   | 1 group (08h-0Fh)        |
| 1   | 0   | 2 group (10h-17h)        |
| 1   | 1   | 3 group (18h-1Fh)        |

Table 5.3.3 Affects the operation of flag bits (X indicates that flag bits are related to the result of the operation)

| Operation | CY | OV | AC | Operation  | CY | OV | AC |
|-----------|----|----|----|------------|----|----|----|
| ADD       | Х  | Х  | Х  | SETB C     | 1  |    |    |
| ADDC      | Х  | Х  | Х  | CLR C      | 0  |    |    |
| SUBB      | Х  | Х  | Х  | CPL C      | Х  |    |    |
| MUL       | 0  | Х  |    | MOV C, bit | Х  |    |    |
| DIV       | 0  | Х  |    | ANL C, bit | Х  |    |    |
| DAA       | Х  |    |    | ANL C,/bit | Х  |    |    |
| RRC A     | Х  |    |    | ORL C, bit | Х  |    |    |
| RLC A     | Х  |    |    | ORL C,/bit | X  |    |    |
| CJNE      | Х  |    |    |            |    |    |    |

Data address pointer (DPTR):

| Bit   | Name | Access | Description            | Reset value |
|-------|------|--------|------------------------|-------------|
| [7:0] | DPL  | RW     | Data pointer low byte  | 00h         |
| [7:0] | DPH  | RW     | Data pointer high byte | 00h         |

DPL and DPH form a 16-bit data pointer DPTR, which is used to access xSFR, xBUS, xRAM data memory or program memory. The actual DPTR corresponds to two groups of physical 16-bit data pointers in DPTR0 and DPTR1, which are dynamically selected by DPS in XBUS\_AUX.

Stack pointer (SP):

| ĺ | Bit   | Name | Access | Description                                                                                                 | Reset value |
|---|-------|------|--------|-------------------------------------------------------------------------------------------------------------|-------------|
|   | [7:0] | SP   | RW     | Stack pointer, mainly used for program calls and interrupt calls<br>as well as data in and out of the stack | 07h         |

Stack specific functions: protect breakpoints and protect the site, according to the first-in-first-out principle of management. When entering the stack, the SP pointer is automatically added to save data or breakpoint information; when leaving the stack, the SP pointer is taken to point to the data unit, and the SP pointer is automatically minus 1. The initial value of SP after reset is 07h, and the corresponding default stack storage starts at 08h.

### 5.4 Unique Register

High and Low Inverted Values of the Accumulator (A\_INV):

| Bit   | Name  | Access | Description                                                                                                                                                                                                   | Reset value |
|-------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | A_INV | RO     | The inverted values of the high and low bits of the accumulator, the result of the reverse order of bit $0 \sim$ bit 7 of A_INV, bit 7 and bit $6 \sim 0$ of ACC are bit 0 and bit $1 \sim 7$ , respectively. | 00h         |

Global Configuration Register (GLOBAL\_CFG), which is writable only in safe mode:

| Bit   | Name            | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reset value |
|-------|-----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:6] | Reserved        | RO     | For CH549, a fixed value of 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11b         |
| [7:6] | Reserved        | RO     | For CH548, a fixed value of 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10b         |
| 5     | bBOOT_L<br>OAD  | RO     | Bootloader status bit, which is used to distinguish the ISP<br>bootstrapper state or the application state: set 1 when the<br>power is powered on and clear 0 when the software is reset.<br>For a chip with an ISP bootstrapper, the bit 1 indicates that it<br>has never been reset by software, and it is usually the state of<br>the ISP bootstrap that runs after power is powered on; a bit of<br>0 indicates that it has been reset by software, usually the state<br>of the application. | 1           |
| 4     | bSW_RES<br>ET   | RW     | Software reset control bit: Setting 1 causes software reset and hardware automatic zeroing                                                                                                                                                                                                                                                                                                                                                                                                       | 0           |
| 3     | bCODE_<br>WE    | RW     | Flash-ROM write allowed bit:<br>If this bit is 0, it is write protected; if it is 1, Flash-ROM is<br>writable and erasable                                                                                                                                                                                                                                                                                                                                                                       | 0           |
| 2     | bDATA_<br>WE RW |        | Write allowed bit in DataFlash area of Flash-ROM: If this bit<br>is 0, write-protected; if 1, DataFlash area is writable and<br>erasable                                                                                                                                                                                                                                                                                                                                                         | 0           |
| 1     | Reserved        | RO     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0           |
| 0     | bWDOG_<br>EN    | RW     | Watchdog reset enable bit: This bit is 0 watchdog can only be<br>used as timer; this bit 1 allows watchdog reset when timing<br>overflows                                                                                                                                                                                                                                                                                                                                                        | 0           |

Chip ID Identification Code (CHIP\_ID):

| Bit   | Name    | Access | Description                                                            | Reset value |
|-------|---------|--------|------------------------------------------------------------------------|-------------|
| [7:0] | CHIP_ID | RO     | For CH549, the fixed value is 49h, which is used to identify the chip. | 49h         |
| [7:0] | CHIP_ID | RO     | For CH548, the fixed value is 48h, which is used to identify the chip. | 48h         |

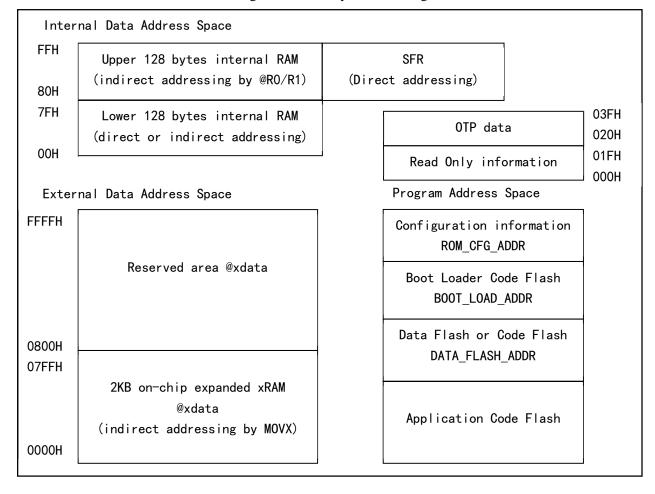
Safe Mode Control Register (SAFE\_MOD):

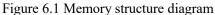
| Bit   | Name     | Access | Description                          | Reset value |
|-------|----------|--------|--------------------------------------|-------------|
| [7:0] | SAFE_MOD | WO     | Used to enter or terminate safe mode | 00h         |

Some SFR can only write data in safe mode, while it is always read-only in non-safe mode. Steps to enter safe mode: (1) Write to the register for 55 hours

(2) Then write AAh

(3) Since then, about 13 to 23 main frequency cycles of the system are in safe mode, and one or more security classes SFR or ordinary SFR can be rewritten during the validity period.


(4) Automatically terminate the security mode after the expiration of the above validity period


(5) Or write any value to the register to terminate the safe mode in advance.

### 6. Memory Structure

### 6.1 Memory Space

CH549 addressing space is divided into program storage space, internal data storage space, external data storage space, read-only space and OTP space.





### 6.2 Program Memory Space

The total storage space of the program is 64KB, which is all used for flash-ROM, including the Code Flash area where the instruction code is saved, the Data Flash area where the non-volatile data is stored, and the Configuration Information area of the configuration information.

Data Flash (EEPROM) addresses range from F000h to F3FFH, and supports single-byte read (8-bit), single-byte write (8-bit), block write (1'64 bytes) and block erase (64 bytes). The data remains unchanged after the chip is powered off, and can also be used as a Code Flash.

Code Flash includes application code for low-address areas and bootstrap code for high-address areas, which can also be combined with Data Flash to save a single application code.

For the application code area of CH548, Code Flash, only 32KB.

The configuration information Configuration Information has a total of 16 bits of data, which is set by the programmer as needed, referring to Table 6.2.

| Table 6.2 Descri | ption of flash-ROM | configuration | information |
|------------------|--------------------|---------------|-------------|
| Table 0.2 Desen  | phon of hash-room  | configuration | mormation   |

| Bit     | D:4      | Description | Recommended |
|---------|----------|-------------|-------------|
| address | Bit name | Description | value       |

| 15    | Code_Protect         | Code and data protection mode in flash-ROM:<br>0-allow read; 1-disable programmer read, program secret                                                                                                                                    | 0/1    |
|-------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 14    | No_Boot_Load         | Enable BootLoader boot code boot mode:<br>0-start from the application at 0000h address;<br>1-start from the Bootloader at F400h address                                                                                                  | 1      |
| 13    | En_Long_Reset        | Additional delayed reset during enable power-on reset:<br>0-standard short reset, 1-wide reset, additional 44mS reset time                                                                                                                | 0      |
| 12    | En_P5.7_RESET        | Enable P5.7 as manual reset input pin: 0-disable; 1-enable RST                                                                                                                                                                            | 1      |
| 11    |                      | Reserved                                                                                                                                                                                                                                  | 0      |
| 10    |                      | Reserved                                                                                                                                                                                                                                  | 0      |
| 9     | Must_1               | (Automatically set to 1 by the programmer as needed)                                                                                                                                                                                      | 1      |
| 8     | Must_0               | (Automatically set to 0 by the programmer as needed)                                                                                                                                                                                      | 0      |
| [7:3] | All_0                | (Automatically set to 00000b by the programmer as needed)                                                                                                                                                                                 | 00000Ь |
| [2:0] | LV_RST_VOL<br>(Vpot) | Select the threshold voltage of the power supply low voltage<br>detection reset module LVR (error 4%):<br>000 or 001 select 2.4V; 010 select 2.7V; 011 select 3.0V; 100<br>select 3.6V; 101 select 4.0V; 110 select 4.3V; 111 select 4.6V | 000Ь   |

### 6.3 Data Memory Space

The internal data storage space is 256bytes, which is all used for SFR and iRAM, in which iRAM is used for stack and fast data storage, which can be subdivided into working register R0-R7, bit variable bdata, byte variable data, idata and so on.

The external data storage space is a total of 64KB, as shown in figure 6.1. except that part of it is used for 2KB onchip expansion xRAM, the remaining address range from 0800h to FFFFh is reserved.

32 bytes of read-only information and 32 bytes of OTP data, as shown in figure 6.1, need to be accessed through dedicated operations.

### 6.4 flash-ROM Register

Table 6.4 List of flash-ROM registers

| Name        | Address | Description                                                         | Reset value |
|-------------|---------|---------------------------------------------------------------------|-------------|
| ROM_DATA_HH | 8Fh     | 8Fh High bytes of high words in flash-ROM data register (read-only) |             |
| ROM_DATA_HL | 8Eh     | Low bytes of high words in flash-ROM data register (read-only)      | xxh         |
| ROM_DATA_HI | 8Eh     | 16-bit SFR consists of ROM_DATA_HL and ROM_DATA_HH                  | xxxxh       |
| ROM_BUF_MOD | 8Fh     | Buffer mode register for flash-ROM erase and write operations       | xxh         |
| ROM_DAT_BUF | 8Eh     | Data buffer register for flash-ROM erase and write operations       | xxh         |
| ROM_STATUS  | 86h     | Flash-ROM status register (read-only)                               | 00h         |
| ROM_CTRL    | 86h     | Flash-ROM control register (write-only)                             | 00h         |
| ROM_ADDR_H  | 85h     | Flash-ROM address register high byte                                | xxh         |
| ROM_ADDR_L  | 84h     | Flash-ROM address register low byte                                 | xxh         |

| ROM_ADDR    | 84h | 16-bit SFR consists of ROM_ADDR_L and ROM_ADDR_H              | xxxxh |
|-------------|-----|---------------------------------------------------------------|-------|
| ROM_DATA_LH | 85h | High bytes of low word in flash-ROM data register (read only) | xxh   |
| ROM_DATA_LL | 84h | Low bytes of low word in flash-ROM data register (read only)  | xxh   |
| ROM_DATA_LO | 84h | 16-bit SFR consists of ROM_DATA_LL and ROM_DATA_LH            | xxxxh |

### Flash-ROM Address Register (ROM\_ADDR):

| Bit   | Name       | Address | Description                 | Reset value |
|-------|------------|---------|-----------------------------|-------------|
| [7:0] | ROM_ADDR_H | RW      | flash-ROM address high byte | xxh         |
| [7:0] | ROM_ADDR_L | RW      | flash-ROM address low byte  | xxh         |

### Flash-ROM Data Registers (ROM\_DATA\_HI, ROM\_DATA\_LO):

| Bit   | Name        | Address | Description                                                      | Reset value |
|-------|-------------|---------|------------------------------------------------------------------|-------------|
| [7:0] | ROM_DATA_HH | RO      | The high byte of the flash-ROM data register high word (16 bits) | xxh         |
| [7:0] | ROM_DATA_HL | RO      | The low byte of the flash-ROM data register high word (16 bits)  | xxh         |
| [7:0] | ROM_DATA_LH | RO      | The high byte of the flash-ROM data register low word (16 bits)  | xxh         |
| [7:0] | ROM_DATA_LL | RO      | The low byte of the flash-ROM data register low word (16 bits)   | xxh         |

### Buffer Mode Register for flash-ROM Erase and Write Operations (ROM\_BUF\_MOD):

| Bit   | Name          | Address | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reset value |
|-------|---------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | bROM_BUF_BYTE | RW      | Buffer mode for flash-ROM erase and write<br>operations (erase or program): this bit selects the<br>block programming mode for 0, and the data to be<br>written is stored in the xRAM pointed by DPTR.<br>During programming, CH549 automatically<br>fetches data from xRAM and temporarily stores it<br>in ROM_DAT_BUF and then writes to flash-<br>ROM. It supports 1 to 64 bytes of data length, the<br>actual length = MASK_ROM_ADR_END-<br>ROM_ADDR_L [5:0] + 1. Select single-byte<br>programming or 64-byte block erase mode for 1,<br>and the data to be written is stored directly in<br>ROM_DAT_BUF. | x           |
| 6     | Reserved      | RW      | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | х           |
| [5:0] | MASK_ROM_ADDR | RW      | In flash-ROM block programming mode, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xxh         |

| lower 6 bits (including this address) of the e<br>address of the flash-ROM block programm                  |  |
|------------------------------------------------------------------------------------------------------------|--|
| operation;<br>In flash-ROM single-byte programming or obyte block erase mode, 00h is recommended retention |  |

#### Data Buffer Register for flash-ROM Erase and Write Operations (ROM\_DAT\_BUF):

| Bit   | Name        | Address | Description                                                   | Reset value |
|-------|-------------|---------|---------------------------------------------------------------|-------------|
| [7:0] | ROM_DAT_BUF | RW      | Data buffer register for flash-ROM erase and write operations | xxh         |

#### Flash-ROM Control Register (ROM\_CTRL):

| Bit   | Name     | Address | Description                | Reset value |
|-------|----------|---------|----------------------------|-------------|
| [7:0] | ROM_CTRL | WO      | flash-ROM control register | 00h         |

### Flash-ROM Status Register (ROM\_STATUS):

| Bit   | Name         | Address | Description                                   | Reset value |
|-------|--------------|---------|-----------------------------------------------|-------------|
| 7     | Reserved     | RO      | Reserved                                      | 1           |
|       |              |         | Flash-ROM operation address valid status bit: |             |
| 6     | bROM_ADDR_OK | RO      | 0: The parameter is invalid;                  | 0           |
|       |              |         | 1: The address is valid.                      |             |
| [5:2] | Reserved     | RO      | Reserved                                      | 0000b       |
|       |              |         | Flash-ROM operation command error status bit: |             |
| 1     | bROM_CMD_ERR | RO      | 0: Indicates a valid command;                 | 0           |
|       |              |         | 1: Indicates an unknown command or timeout    |             |
| 0     | Reserved     | RO      | Reserved                                      | 0           |

### 6.5 Flash-ROM Operation Steps

1. Erase flash-ROM and change all data bits in the target block to 0:

(1) Enable safe mode, SAFE\_MOD = 55h; SAFE\_MOD = 0AAh;

(2) Set the global configuration register GLOBAL\_CFG to enable write (bCODE\_WE or bDATA\_WE corresponding to code or data);

(3) Set the address register ROM\_ADDR to write the 16-bit destination address, which is only valid for 10 bits higher;

(4) Set the buffer mode register ROM\_BUF\_MOD of the erase-write operation to 80h, and select 64-byte block erase mode.

(5) Optionally, set the data buffer register ROM\_DAT\_BUF of the erase and write operation to 00h;

(6) Set the operation control register ROM\_CTRL to 0A6h, perform the block erase operation, and the program is automatically suspended during the operation;

(7) When the program resumes running after the operation is completed, the status of the operation can be checked by querying the status register ROM\_STATUS. If multiple blocks are to be erased, the loop (3), (4), (5), (6), (7) steps, and steps (3), (4), (5) can be switched sequentially;

(8) Enter the safe mode again, SAFE\_MOD = 55h; SAFEDEMOD = 0AAh;

(9) Set the global configuration register GLOBAL\_CFG to enable write protection (bCODE\_WE=0, bDATA WE=0).

2. Write flash-ROM in a single byte to change some data bits in the target byte from 0 to 1 (the bit data cannot be changed from 1 to 0):

(1) Enable safe mode, SAFE\_MOD = 55h; SAFE\_MOD = 0AAh;

(2) Set the global configuration register GLOBAL\_CFG to enable write (bCODE\_WE or bDATA\_WE corresponding to code or data);

(3) Set the address register ROM\_ADDR to write the 16-bit target address;

(4) Set the buffer mode register ROM\_BUF\_MOD for erase-write operation to 80h, and select single-byte programming mode;

(5) Set the data buffer register ROM\_DAT\_BUF of the erase and write operation to the byte data to be written;

(6) Set the operation control register ROM\_CTRL to 09Ah to perform the write operation, and the program is automatically suspended during the operation;

(7) When the program resumes running after the operation is completed, the status of the operation can be checked by querying the status register ROM\_STATUS. If multiple data are to be written, the steps (3), (4), (5), (6), (7), and steps (3), (4), (5) can be switched sequentially;

(8) Enter the safe mode again, SAFE\_MOD = 55ht SAFEDEMOD = 0Aah;

(9) Set the global configuration register GLOBAL\_CFG to enable write protection (bCODE\_WE=0, bDATA WE=0).

3. Write flash-ROM in blocks to change some data bits in multiple target bytes from 0 to 1 (the bit data cannot be changed from 1 to 0):

(1) Enable safe mode, SAFE\_MOD = 55h; SAFEDEMOD = 0Aah;

(2) Set the global configuration register GLOBAL\_CFG to enable write (bCODE\_WE or bDATA\_WE corresponding to code or data);

(3) Set the address register ROM\_ADDR to write a 16-bit starting destination address, such as 1357h;

(4) Set the buffer mode register ROM\_BUF\_MOD of the erase and write operation to the lower 6 bits of the end target address, which should be greater than or equal to the starting target address of ROM\_ADDR\_L [5:0]. Select the data block programming mode, for example, if the end address is 1364h, then ROM\_BUF\_MOD should be set to 24 hours (64h&3Fh) and calculate the number of bytes of the data block = 0Dh;

(5) Allocate a 64-byte-aligned buffer area in xRAM, such as 0580h~05BFh, specify the offset address in the buffer area with the lower 6 bits of the starting destination address, get the xRAM buffer start address of this data block programming operation, store the block to be written from the xRAM buffer start address, and put the xRAM buffer start address into DPTR, for example, DPTR=0580h+ (57h&3Fh) = 0597h. The actual programming operation only uses the xRAM of the 0597h~05A4h address;

(6) Set the operation control register ROM\_CTRL to 09Ah to perform the write operation, and the program is automatically suspended during the operation;

(7) When the program resumes running after the operation is completed, the status of the operation can be checked by querying the status register ROM\_STATUS. If multiple data are to be written, the steps (3), (4), (5), (6), (7), and steps (3), (4), (5) can be switched sequentially.

(8) Enter the safe mode again, SAFE\_MOD = 55h; SAFEDEMOD = 0AAh;

(9) Set the global configuration register GLOBAL\_CFG to enable write protection (bCODE\_WE=0, bDATA\_WE=0).

4. Read flash-ROM:

Read the code or data of the target address directly using the MOVC instruction or through a pointer to the program's storage space.

5. Write the OTP data region in a single byte, changing some data bits in the target byte from 0 to 1 (the bit data cannot be changed from 1 to 0):

(1) Enable safe mode, SAFE\_MOD = 55hth SAFEDEMOD = 0AAh;

(2) Set the global configuration register GLOBAL\_CFG to enable write enable (bDATA\_WE);

(3) Set the address register ROM\_ADDR and write to the destination address (20h~3Fh). In fact, only the upper 4 bits of the lower 6 bits are valid;

(4) Set the buffer mode register ROM\_BUF\_MOD for erase-write operation to 80h, and select single-byte programming mode;

(5) Set the data buffer register ROM\_DAT\_BUF of the erase and write operation to the byte data to be written;

(6) Set the operation control register ROM\_CTRL to 099h, perform the write operation, and the program is automatically suspended during the operation;

(7) When the program resumes running after the operation is completed, the status of the operation can be checked by querying the status register ROM\_STATUS. If multiple data are to be written, the steps (3), (4), (5), (6), (7), and steps (3), (4), (5) can be switched sequentially;

(8) Enter the safe mode again, SAFE\_MOD = 55ht SAFEDEMOD = 0AAh;

(9) Set the global configuration register GLOBAL\_CFG to enable write protection (bCODE\_WE=0, bDATA\_WE=0).

6. Read read-only information area or OTP data area in 4 bytes:

(1) Set the address register ROM\_ADDR to write a 4-byte aligned destination address (00h~3Fh), which is only valid for the lower 6 bits;

(2) Set the operation control register ROM\_CTRL to 08Dh, perform the read operation, and automatically suspend the program during the operation;

(3) The program resumes running after the operation is completed. Query the status register ROM\_STATUS to view the status of the operation;

(4) 4 bytes of data are obtained from flash-ROM data registers ROM\_DATA\_HI and ROM\_DATA\_LO.

7. Note: when erasing and writing flash-ROM/EEPROM, it is recommended that it be carried out only at the ambient temperature of  $20^{\circ}$ C ~  $85^{\circ}$ C. If the program erase and write operation is carried out beyond the above temperature range, although it is normal in general, it does not rule out the possibility of reducing the data retention capacity TDR and reducing the erase times NEPCE or even affect the accuracy of the data.

### 6.6 On-board Program and ISP Download

When configuring the information Code\_Protect=0, the code and data in the CH549 chip flash-ROM can be read and written by an external programmer through the synchronous serial interface; when the configuration information Code\_Protect=1, the code and data in the flash-ROM are protected and cannot be read, but can be erased, and the code protection will be removed if the power is rebooted after erasing.

When the CH549 chip is preset with the BootLoader bootstrap, CH549 can support various ISP download methods such as USB or asynchronous serial port to load the application; but in the absence of the bootstrap, CH549 can only be written into the bootstrap or application by an external special programmer. In order to support on-board programming, 4 connection pins between CH549 and programmer need to be reserved in the circuit, and the least

necessary connection pins are 3: P1.4, P1.6, P1.7.

| Pin  | GPIO | Description                                                                        |  |  |  |  |  |
|------|------|------------------------------------------------------------------------------------|--|--|--|--|--|
| RST  | P5.7 | Programmed reset control pin (optional), high to allow entry into programmed state |  |  |  |  |  |
| SCS  | P1.4 | Programmed chip select input pin (necessary), default high, active low             |  |  |  |  |  |
| SCK  | P1.7 | Programmed clock input pin (necessary)                                             |  |  |  |  |  |
| MISO | P1.6 | Data output pin in programming state (necessary)                                   |  |  |  |  |  |

| Table 6.6.1 | Connection | pins to | the | programmer |
|-------------|------------|---------|-----|------------|
| 10010 0.0.1 | Connection | pms to  | une | programmer |

### 6.7 Unique ID

Each single-chip microcomputer leaves the factory with a unique ID number, that is, the chip identification number. The ID data and its checksum have a total of 8 bytes and are stored in the area where the offset address of the readonly information area is 10h. Please refer to the C language example program for specific operation.

| Offset address | ID data description                                                                    |
|----------------|----------------------------------------------------------------------------------------|
| 10h, 11h       | ID first word data, in order, the lowest byte of the ID number, the next lowest byte   |
| 12h 12h        | ID second word data, in order, the next highest byte and the highest byte of the ID    |
| 12h, 13h       | number                                                                                 |
| 14h, 15h       | ID last word data, in order, is the second highest byte and highest byte of the 48-bit |
| 14n, 13n       | ID number                                                                              |
| 16h, 17h       | The 16-bit sum of the first, second and last word of the ID data, used for ID checksum |

The ID number can be used with the download tool to encrypt the target program. For general applications, you only need to use the first 32 bits of the ID number.

### 6.8 Calibration Information for Temperature Sensor (TS)

The calibration information of the temperature sensor is located in the area where the offset address of the read-only information area is 0Ch. For specific operation, please refer to the C language example program.

## 7. Power Management, Sleep and Reset

### 7.1 External Power in

The CH549 chip has a low dropout voltage regulator LDO from 5V to 3.3V, and the 3.3V power supply is used in modules such as USB. CH549 supports external 5V or 3.3V or even 2.8V power supply voltage input, the two power supply voltage input modes refer to the following table.

| External power<br>voltage       | VDD voltage: external voltage 2.8V~5V                                                                                                  | V33 voltage: internal USB voltage 3.3V<br>(Notes: V33 will be automatically shorted to<br>VDD during sleep)                                              |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.3V or 2.8V<br>Including <3.6V | <ul><li>3.3V voltage input to I/O and LDO.</li><li>A decoupling capacitor not less than 0.1uF<br/>to the ground necessarily.</li></ul> | Short VDD input as internal USB power.<br>A decoupling capacitor not less than 0.1uF<br>to the ground necessarily.                                       |
| 5V<br>Including >3.6V           | 5V voltage input to I/O and LDO.<br>A decoupling capacitor not less than 0.1uF<br>to the ground necessarily.                           | Internal voltage regulator 3.3V output and<br>3.3V internal USB power input.<br>A decoupling capacitor not less than 0.1uF<br>to the ground necessarily. |

After the power is powered on or the system is reset, the CH549 is running by default. On the premise that the performance meets the requirements, properly reducing the main frequency of the system can reduce the power consumption at run time. When CH549 does not need to run at all, you can set the PD in PCON to sleep, and you can choose to wake up externally through USB, UART0, UART1, SPI0 and some GPIO during sleep.

### 7.2 Power and Sleep Control Register

| Table 7.2.1 | Power and | l sleep | control | registers |
|-------------|-----------|---------|---------|-----------|
|             |           | ·r      |         | 8         |

| Name       | Address | Description                             | Reset value |
|------------|---------|-----------------------------------------|-------------|
| WDOG_COUNT | FFh     | Watchdog count register                 | 00h         |
| RESET_KEEP | FEh     | Reset keep register                     | 00h         |
| POWER_CFG  | BAh     | Power management configuration register | 0xh         |
| WAKE_CTRL  | A9h     | Wake-up control register                | 00h         |
| PCON       | 87h     | Power control register                  | 10h         |

Watchdog count register (WDOG\_COUNT):

| Bit   | Name       | Access | Description                                                                                                                | Reset value |
|-------|------------|--------|----------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | WDOG_COUNT | RW     | Watchdog current count, count full 0FFh turn 00h when overflow, overflow automatically set interrupt flag bWDOG_IF_TO to 1 | 00h         |

### Reset keep register (RESET\_KEEP):

| ĺ | Bit   | Name       | Access | Description                                                                                                                                                    | Reset value |
|---|-------|------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | [7:0] | RESET_KEEP | RW     | Reset the hold register, the value can be artificially<br>modified, except that the power-on reset can clear it, any<br>other reset will not affect the value. | 00h         |

| Power Management  | Configuration | Register (P | OWER     | CFG) or        | nly can be | written in | safe mode. |
|-------------------|---------------|-------------|----------|----------------|------------|------------|------------|
| i ower management | Comparation   |             | O II LIC | $c_1 c_2, o_1$ | ing can be | willion m  | sure mode. |

| Bit   | Name               | Access | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reset value |
|-------|--------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | bPWR_DN_MO<br>DE   | RW     | <ul><li>Sleep power off mode selection:</li><li>0: Power off/deep sleep mode, saving more power, but wake up slowly.</li><li>1: Standby/normal sleep mode, wake up quickly.</li></ul>                                                                                                                                                                                                                                                                                                | 0           |
| 6     | bUSB_PU_RES        | RW     | <ul> <li>USB pull-up resistance selection:</li> <li>0: 1.5KΩ, for the case when V33 is 3.3V.</li> <li>1: 7KΩ, for the case when V33 is 5V.</li> </ul>                                                                                                                                                                                                                                                                                                                                | 0           |
| 5     | bLV_RST_OFF        | RW     | <ul><li>Low voltage reset detection module OFF:</li><li>0: Enable supply voltage detection and generate reset signal at low voltage.</li><li>1: Low voltage detection module off.</li></ul>                                                                                                                                                                                                                                                                                          | 0           |
| 4     | bLDO_3V3_OF<br>F   | RW     | <ul> <li>USB voltage regulator LDO OFF control (auto OFF during sleep):</li> <li>0: 3.3V voltage is generated by VDD power supply for USB and other modules.</li> <li>1: Disable LDO and internally short V33 to VDD.</li> </ul>                                                                                                                                                                                                                                                     | 0           |
| 3     | bLDO_CORE_V<br>OL  | RW     | <ul><li>Core voltage mode:</li><li>0: Normal voltage mode.</li><li>1: Boost voltage mode, with better performance, and support higher system clock.</li></ul>                                                                                                                                                                                                                                                                                                                        | 0           |
| [2:0] | MASK_ULLDO<br>_VOL | RW     | Data keep supply voltage selection in power off/deepsleep mode:000: 2.0V.001: 1.9V.010: 1.8V.011: 1.7V.100: 1.6V.110: 1.4V.111: 1.3V.The above are relative reference values which do notneed to be adjusted under a 5V supply;If 3.3V supply is used, it is recommended to read first,subtract 2 from the lower 3 bits (if the original value isless than 2 the result is cleared to 0) and write back insafe mode in order to select the relative higher two dataholding voltages. | xxxb        |

| Wake-up Control Register | (WAKE | CTRL). | only can   | be written | in safe r  | node: |
|--------------------------|-------|--------|------------|------------|------------|-------|
| mane up control negister | (     |        | , only ean | 00 000000  | III baie i |       |

| Bit | Name         | Access | Description                                          | Reset value |
|-----|--------------|--------|------------------------------------------------------|-------------|
| 7   | LWAR DV LICD | RW     | USB event wake-up enable:                            | 0           |
| /   | bWAK_BY_USB  | ĸw     | 1: Enable; 0: Disable.                               | U           |
|     |              |        | UART1 pin RXD1 low-level input event wake-up enable: |             |
| 6   | bWAK_RXD1_LO | RW     | 0: Disable; 1: Enable.                               | 0           |
|     |              |        | Select RXD1 or RXD1_according to bUART1_PIN_X=0/1.   |             |
| 5   | bwak p1 5 lo | RW     | P1.5 low-level wake-up enable                        | 0           |
| 5   | UWAK_PI_5_LU | κw     | 0: Disable; 1: Enable.                               | 0 0 0       |

| 4 | bWAK P1 4 LO                                                         | RW                     | P1.4 low-level wake-up enable                       |   |  |
|---|----------------------------------------------------------------------|------------------------|-----------------------------------------------------|---|--|
|   | UWAK_FI_4_LO                                                         | ĸw                     | 0: Disable; 1: Enable.                              | 0 |  |
| 3 | bWAK P0 3 LO                                                         | RW                     | P0.3 low-level wake-up enable                       | 0 |  |
| 5 | UWAK_FU_5_LO                                                         | K W                    | 0: Disable; 1: Enable.                              | U |  |
|   | bWAK_P57H_INT3 PUL P5.7 high-level and INT3 low-level wake-up enable |                        |                                                     |   |  |
| 2 | L                                                                    | RW                     | 0: Disable; 1: Enable.                              | 0 |  |
|   | bWAK_INT0E_P33<br>L                                                  | RW                     | INT0 edge change and P3.3 low-level wake-up enable. | 0 |  |
| 1 |                                                                      |                        | 0: Disable; 1: Enable.                              |   |  |
| 1 |                                                                      |                        | INTO selects INTO or INTO_ according to             | 0 |  |
|   |                                                                      |                        | bINT0_PIN_X=0/1.                                    |   |  |
|   | 0: Dis                                                               |                        | UART0 pin RXD0 low-level input wake-up enable.      |   |  |
| 0 |                                                                      | 0: Disable; 1: Enable. | 0                                                   |   |  |
|   | bWAK_RXD0_LO                                                         | XD0_LO RW              | Select RXD0 or RXD0_ according to                   | 0 |  |
|   |                                                                      |                        | bUART0_PIN_X=0/1.                                   |   |  |

The wake-up enable of the voltage comparator is controlled by bCMP\_EN. When bCMP\_EN is 1, if the comparator results in inverse change, it will wake up automatically.

| Bit | Name       | Access | Description                                                                                                                                                                 | Reset value |
|-----|------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | SMOD       | RW     | Baud rate selection for UART0 mode 1/2/3 when timer1 is used to generate UART0 baud rate:                                                                                   | 0           |
|     |            |        | 0: Slow mode. 1: Fast mode.                                                                                                                                                 |             |
| 6   | Reserved   | RO     | Reserved                                                                                                                                                                    | 0           |
| 5   | bRST_FLAG1 | R0     | Recent reset flag high bit                                                                                                                                                  | 0           |
| 4   | bRST_FLAG0 | R0     | Recent reset flag low bit                                                                                                                                                   | 1           |
| 3   | GF1        | RW     | General purpose flag bit 1<br>User-defined. Can be reset and set by software                                                                                                | 0           |
| 2   | GF0        | RW     | General purpose flag bit 0<br>User-defined. Can be reset and set by software                                                                                                | 0           |
| 1   | PD         | RW     | Sleep mode enable, set to 1 and sleep, hardware<br>automatically clears when waking up.<br>It is strongly recommended to turn off global interrupts<br>(EA=0) before sleep. | 0           |
| 0   | Reserved   | RO     | Reserved                                                                                                                                                                    | 0           |

| bRST_FLAG1 | bRST_FLAG0 | 复位标志描述                                                                                               |
|------------|------------|------------------------------------------------------------------------------------------------------|
| 0          | 0          | Software reset, source: bSW_RESET=1 and (bBOOT_LOAD=0 or bWDOG_EN=1)                                 |
| 0          | 1          | Power on reset or low voltage detection reset, source: voltage on VDD is lower than checking voltage |
| 1          | 0          | Watchdog reset, source: bWDOG_EN=1 and watchdog timeout overflows                                    |

| 1 | 1 1 | External input manual reset by RST pin, source: En_P5.7_RESET=1 and |
|---|-----|---------------------------------------------------------------------|
| 1 | 1   | P5.7 high-level input                                               |

### 7.3 Reset Control

CH549 has 5 reset sources: power-on reset and power supply low-voltage detection reset, external reset, software reset, watchdog reset, the latter three belong to thermal reset.

### 7.3.1 Power on Reset and Low Voltage Detection Reset

The power-on reset POR is generated by the on-chip power-on detection circuit, and the Tpor is automatically delayed by the hardware to maintain the reset state, and the CH549 runs after the delay is over.

The power supply low voltage detection reset LVR is generated by the on-chip voltage detection circuit. The LVR circuit continuously monitors the power supply voltage of the VDD pin and produces a low voltage reset when it is lower than the detection level Vpot, and the hardware automatically delays the Tpor to maintain the reset state, and the CH549 runs after the delay is over.

Only power-on reset and power low-voltage detection reset make CH549 reload configuration information and clear reset \_ KEEP, other hot resets do not affect.

### 7.3.2 External Reset

The external reset is generated by a high level applied to the RST pin. The reset process is triggered when the configuration information En\_P5.7\_RESET is 1 and the duration of the high level on the RST pin is greater than the Trst. When the external high-level signal is withdrawn, the hardware automatically delays the Trdl to maintain the reset state, and after the delay ends, the CH549 starts to execute from the 0 address.

#### 7.3.3 Software Reset

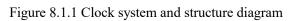
CH549 supports internal software reset so that the CPU state can be actively reset and re-run without external intervention. Setting the bSW\_RESET in the global configuration register GLOBAL\_CFG to 1, the software can reset, and automatically delay the Trdl to maintain the reset state. After the delay ends, the CH549 starts from the 0 address, and the bSW\_RESET bit is automatically zeroed by the hardware.

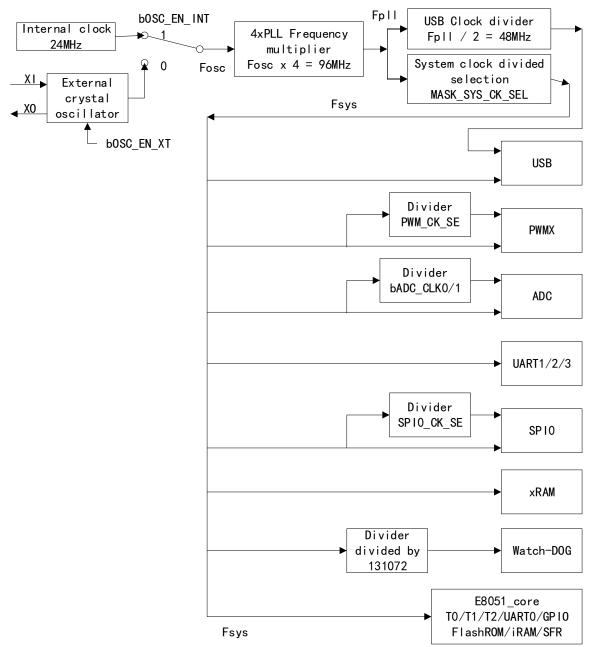
When bSW\_RESET is set to 1, if bBOOT\_LOAD=0 or bWDOG\_EN=1, then bRST\_FLAG1/0 will be indicated as software reset after reset; when bSW\_RESET is set to 1, if bBOOT\_LOAD=1 and bWDOG\_EN=0, then bRST\_FLAG1/0 will not generate a new reset flag, but will keep the previous reset flag unchanged.

For the chip with the ISP boot program, after the power is reset, the boot program is run first, and the program resets the chip according to the need to switch to the application program state. This software reset only causes the bBOOT\_LOAD to zero and does not affect the state of the bRST\_FLAG1/0 (due to the bBOOT\_LOAD=1 before the reset), so when switching to the application state, the bRST\_FLAG1/0 still indicates the power-on reset state.

### 7.3.4 Watchdog Reset

The watchdog reset occurs when the watchdog timer overruns. The watchdog timer is an 8-bit counter whose clock frequency is the system main frequency Fsys/131072. It produces an overflow signal when the full 0FFh turns to 00h.


The watchdog timer overflow signal will trigger the interrupt flag bWDOG\_IF\_TO 1, which is automatically zeroed when the WDOG\_COUNT is reloaded or when the corresponding interrupt service program is entered.


Different timing period Twdc is realized by writing different initial counting values to WDOG\_COUNT. Under the 12MHz dominant frequency, the watchdog timing period Twdc is about 2.8s for 00h writing and 1.4s for 80h writing. If the watchdog timer overflows bWDOG\_EN=1, then the watchdog reset is generated, and the Trdl is automatically

delayed to maintain the reset state. After the delay ends, the CH549 is executed from address 0. In order to avoid being reset by watchdog during bWDOG\_EN=1, WDOG\_COUNT must be reset in time to avoid overflow.

## 8. System Clock

### 8.1 Clock Block Diagram





After selecting one of the two clocks, the internal clock or the external clock is used as the original clock Fosc, and then the Fpll high frequency clock is generated after PLL frequency doubling. finally, the system clock Fsys and the clock Fusb4x of the USB module are obtained through two groups of frequency dividers. The system clock Fsys is provided directly to each module of CH549.

### 8.2 Register Description

| Name      | Address | Description                         | Reset value |
|-----------|---------|-------------------------------------|-------------|
| CLOCK_CFG | B9h     | System clock configuration register | 83h         |

### System Clock Configuration Register (CLOCK\_CFG), only can be written in safe mode:

| Bit   | Name                | Access | Description                                                                                                                                                                                                                                                                                                                             | Reset value |
|-------|---------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | bOSC_EN_INT         | RW     | Internal clock oscillator enable, a 1 enables the internal clock oscillator and selects the internal clock; a 0 disables the internal clock oscillator and selects the external crystal oscillator to provide the clock.                                                                                                                | 1           |
| 6     | bOSC_EN_XT          | RW     | External crystal oscillator enable, this bit is 1 to enable<br>the P4.6/XO pin as XI/XO and enable the oscillator, an<br>external quartz crystal or ceramic oscillator is required<br>between XI and XO; this bit is 0 to disable the external<br>oscillator.                                                                           | 0           |
| 5     | bWDOG_IF_TO         | RO     | The watchdog timer interrupt flag bit, a 1 in this bit<br>indicates an interrupt, triggered by the timer overflow<br>signal; a 0 in this bit indicates no interrupt. This bit is<br>automatically cleared when the watchdog count<br>register WDOG_COUNT is reloaded or when the<br>corresponding interrupt service program is entered. | 0           |
| [4:3] | Reserved            | RO     | Reserved                                                                                                                                                                                                                                                                                                                                | 00b         |
| [2:0] | MASK_SYS_CK_<br>SEL | RW     | System clock frequency selection, refer to Table 8.2.2.                                                                                                                                                                                                                                                                                 | 011b        |

Table 8.2.2 System clock frequency selection

| MASK_SYS_CK_S<br>EL | System main<br>frequency Fsys | Relation with Fxt | Fsys when Fosc=24MHz                                                   |
|---------------------|-------------------------------|-------------------|------------------------------------------------------------------------|
| 000b                | Fpll / 512                    | Fxt / 128         | 187.5KHz                                                               |
| 001b                | Fpll / 128                    | Fxt / 32          | 750KHz                                                                 |
| 010b                | Fpll / 32                     | Fxt / 8           | 3MHz                                                                   |
| 011b                | Fpll / 8                      | Fxt / 2           | 12MHz                                                                  |
| 100b                | Fpll / 6                      | Fxt / 1.5         | 16MHz                                                                  |
| 101b                | Fpll / 4                      | Fxt / 1           | 24MHz                                                                  |
| 110b                | Fpll / 3                      | Fxt / 0.75        | 32MHz                                                                  |
| 111b                | Fpll / 2                      | Fxt / 0.5         | Reserved, for custom chips<br>only, to be used with<br>bLDO_CORE_VOL=1 |

### **8.3 Clock Configuration**

When the CH549 chip is powered on, the internal clock is used by default, and the internal clock frequency is 24MHz. Either the internal clock or the external crystal oscillator clock can be selected through the CLOCK CFG.

If the external crystal oscillator is turned off, the XI pin can be used as a P4.6 normal I/O port. If an external crystal oscillator is used to provide a clock, then the crystal should be straddled between the XI and XO pins, and the oscillating capacitors should be connected to the GND for the XI and XO pins, respectively; if the clock signal is input directly from the outside, it should be input from the XI pin with the XO pin suspended.

Original clock frequency Fosc = bOSC\_EN\_INT? 24MHz: Fxt

PLL frequency: Fpll = Fosc \* 4

USB clock: Fusb4x = Fpll / 2

System clock frequency (Fsys) is obtained by divided Fpll, please refer to Table 8.2.2.

Default status after reset, Fosc=24MHz, Fpll=96MHz, Fusb4x=48MHz, and Fsys=12MHz.

The steps to switch to an external crystal oscillator to provide a clock are as follows:

- (1) Enter safe mode, step 1: SAFE\_MOD = 55h; step 2: SAFE\_MOD = AAh
- (2) Use the bit OR operation to set the bOSC\_EN\_XT in the CLOCK\_CFG to 1, keep the other bits unchanged, and enable the crystal oscillator
- (3) Delay several milliseconds, usually 5mS~10mS, waiting for the crystal oscillator to work stably
- (4) Enter safe mode again, step 1 SAFE\_MOD = 55h; step 2 SAFE\_MOD = AAh
- (5) Use the "bit and" operation to clear the bOSC\_EN\_INT in the CLOCK\_CFG, leave the other bits unchanged, and switch to the external clock
- (6) Turn off safe mode and write any value to SAFE\_MOD to terminate safe mode early.

The steps to modify the main frequency of the system are as follows:

- (1) Enter safe mode, step 1: SAFE\_MOD = 55h; step 2: SAFE\_MOD = AAh
- (2) Write a new value to CLOCK\_CFG
- (3) Turn off safe mode and write any value to SAFE\_MOD to terminate safe mode early.

#### Remarks:

(1) If using USB module, then Fusb4x must be 48MHz; and when using full-speed USB, the system main frequency Fsys is not less than 6MHz; when using low-speed USB, the system main frequency Fsys is not lower than 1.5MHz.
 (2) Give priority to the lower system clock frequency Fsys, so as to reduce the dynamic power consumption of the system and widen the working temperature range.

## 9. Interrupt

The CH549 chip supports 16 groups of interrupt signal sources, including 6 groups of interrupts compatible with standard MCS51: INT0, T0, INT1, T1, UART0, T2, and extended 10 groups of interrupts: SPI0, INT3, USB, ADC/UART2, UART1, PWMX/UART3, GPIO, WDOG, among which GPIO interrupts can be selected from 7 I/O pins.

Interrupt service programs should be as concise as possible, try not to call functions and subroutines, and try not to read and write xdata variables and code constants.

|              | Table 9.1.1 List of interrupt vector |                  |                                |                  |  |  |
|--------------|--------------------------------------|------------------|--------------------------------|------------------|--|--|
| Interrupt    | Entry<br>address                     | Interrupt<br>No. | Description                    | Default priority |  |  |
| INT_NO_INT0  | 0x0003                               | 0                | External interrupt 0           |                  |  |  |
| INT_NO_TMR0  | 0x000B                               | 1                | Timer0 interrupt               | High priority    |  |  |
| INT_NO_INT1  | 0x0013                               | 2                | External interrupt 1           | Ļ                |  |  |
| INT_NO_TMR1  | 0x001B                               | 3                | Timer1 interrupt               | ↓ ↓              |  |  |
| INT_NO_UART0 | 0x0023                               | 4                | UART0 interrupt                | Ļ                |  |  |
| INT_NO_TMR2  | 0x002B                               | 5                | Timer2 interrupt               |                  |  |  |
| INT_NO_SPI0  | 0x0033                               | 6                | SPI0 interrupt                 |                  |  |  |
| INT_NO_INT3  | 0x003B                               | 7                | External interrupt 3           |                  |  |  |
| INT_NO_USB   | 0x0043                               | 8                | USB interrupt                  |                  |  |  |
| INT_NO_ADC   | 0004D                                | 9                | ADC interrupt (when bU2IE=0);  |                  |  |  |
| INT_NO_UART2 | 0x004B                               | 9                | UART2 interrupt (when bU2IE=1) | ↓<br>↓           |  |  |
| INT_NO_UART1 | 0x0053                               | 10               | UART1 interrupt                |                  |  |  |
| INT_NO_PWMX  | 0005D                                | 11               | PWMX interrupt (when bU3IE=0); | ↓                |  |  |
| INT_NO_UART3 | 0x005B                               | 11               | UART3 interrupt (when bU3IE=1) | Ļ                |  |  |
| INT_NO_GPIO  | 0x0063                               | 12               | GPIO Interrupt                 | Low priority     |  |  |
| INT_NO_WDOG  | 0x006B                               | 13               | Watchdog timer interrupt       |                  |  |  |

### 9.1 Register Description

Table 9.1.2 List of interrupt registers

| Name    | Address | Description                                  | Reset value |
|---------|---------|----------------------------------------------|-------------|
| IP_EX   | E9h     | Extended interrupt priority control register | 00h         |
| IE_EX   | E8h     | Extended interrupt enable register           | 00h         |
| GPIO_IE | CFh     | GPIO interrupt enable register               | 00h         |
| IP      | B8h     | Interrupt priority control register          | 00h         |
| INTX    | B3h     | Extended external interrupt control register | 00h         |
| IE      | A8h     | Interrupt enable register                    | 00h         |

#### Interrupt Enable Register (IE):

| Bit | Name | Access | Description                              | Reset value |
|-----|------|--------|------------------------------------------|-------------|
| 7   | 7 EA | RW     | Global interrupt enable control bit      | 0           |
| /   |      |        | 1: Interrupt is enabled when E_DIS is 0. |             |

|   |       |    | 0: All interrupt requests are disabled.                          |   |
|---|-------|----|------------------------------------------------------------------|---|
|   |       |    | Global interrupt disable control bit                             |   |
|   |       |    | 1: All interrupt requests are disabled;                          |   |
| 6 | E_DIS | RW | 0: Interrupt is enabled when EA is 1.                            | 0 |
|   |       |    | This bit is usually used to disable interrupt temporarily during |   |
|   |       |    | flash-ROM operation.                                             |   |
|   |       |    | Timer2 interrupt enable bit                                      |   |
| 5 | ET2   | RW | 1: T2 interrupt is enabled;                                      | 0 |
|   |       |    | 0: T2 interrupt is disabled.                                     |   |
|   |       |    | UART0 interrupt enable bit                                       |   |
| 4 | ES    | RW | 1: UART0 interrupt is enabled;                                   | 0 |
|   |       |    | 0: UART0 interrupt is disabled.                                  |   |
|   |       |    | Timer1 interrupt enable bit                                      |   |
| 3 | ET1   | RW | 1: T1 interrupt is enabled;                                      | 0 |
|   |       |    | 0: T1 interrupt is disabled.                                     |   |
|   |       |    | External interrupt1 enable bit                                   |   |
| 2 | EX1   | RW | 1: INT1 interrupt is enabled;                                    | 0 |
|   |       |    | 0: INT1 interrupt is disabled.                                   |   |
|   |       |    | Timer0 interrupt enable bit                                      |   |
| 1 | ET0   | RW | 1: T0 interrupt is enabled;                                      | 0 |
|   |       |    | 0: T0 interrupt is disabled.                                     |   |
|   |       |    | External interrupt0 enable bit                                   |   |
| 0 | EX0   | RW | 1: INT0 interrupt is enabled;                                    | 0 |
|   |       |    | 0: INT0 interrupt is disabled.                                   |   |

### Extended Interrupt Enable Register (IE\_EX):

| Bit | Name     | Access | Description                          | Reset value |  |  |  |  |  |                                     |  |
|-----|----------|--------|--------------------------------------|-------------|--|--|--|--|--|-------------------------------------|--|
|     |          |        | Watchdog timer interrupt enable      |             |  |  |  |  |  |                                     |  |
| 7   | IE_WDOG  | RW     | 1: WDOG interrupt is enabled.        | 0           |  |  |  |  |  |                                     |  |
|     |          |        | 0: WDOG interrupt is disabled.       |             |  |  |  |  |  |                                     |  |
|     |          |        | GPIO interrupt enable                |             |  |  |  |  |  |                                     |  |
| 6   | IE_GPIO  | RW     | 1: GPIO interrupt is enabled.        | 0           |  |  |  |  |  |                                     |  |
|     |          |        | 0: GPIO interrupt is disabled.       |             |  |  |  |  |  |                                     |  |
|     |          |        |                                      |             |  |  |  |  |  | PWMX interrupt enable when bU3IE=0: |  |
|     |          | X RW   | 1: PWMX interrupt is enabled.        |             |  |  |  |  |  |                                     |  |
| 5   | IE_PWMX  |        | 0: PWMX interrupt is disabled.       | 0           |  |  |  |  |  |                                     |  |
| 5   | IE_UART3 | κw     | UART3 interrupt enable when bU3IE=1: |             |  |  |  |  |  |                                     |  |
|     |          |        | 1: UART3 interrupt is enabled.       |             |  |  |  |  |  |                                     |  |
|     |          |        | 0: UART3 interrupt is disabled.      |             |  |  |  |  |  |                                     |  |
|     |          |        | UART1 interrupt enable               |             |  |  |  |  |  |                                     |  |
| 4   | IE_UART1 | RW     | 1: UART1 interrupt is enabled.       | 0           |  |  |  |  |  |                                     |  |
|     |          |        | 0: UART1 interrupt is disabled.      |             |  |  |  |  |  |                                     |  |
| 3   | IE_ADC   | RW     | ADC interrupt enable when bU2IE=0:   | 0           |  |  |  |  |  |                                     |  |
| 5   | IE_UART2 | ις vv  | 1: ADC interrupt is enabled.         | U           |  |  |  |  |  |                                     |  |

|   |         |    | 0: ADC interrupt is disabled.        |   |
|---|---------|----|--------------------------------------|---|
|   |         |    | UART2 interrupt enable when bU2IE=1: |   |
|   |         |    | 1: UART2 interrupt is enabled.       |   |
|   |         |    | 0: UART2 interrupt is disabled.      |   |
|   |         |    | USB interrupt enable                 |   |
| 2 | IE_USB  | RW | 1: USB interrupt is enabled.         | 0 |
|   |         |    | 0: USB interrupt is disabled.        |   |
|   |         |    | External interrupt 3 enable          |   |
| 1 | IE_INT3 | RW | 1: INT3 interrupt is enabled.        | 0 |
|   |         |    | 0: INT3 interrupt is disabled.       |   |
|   |         |    | SPI0 interrupt enable                |   |
| 0 | IE_SPI0 | RW | 1: SPI0 interrupt is enabled.        | 0 |
|   |         |    | 0: SPI0 interrupt is disabled.       |   |

GPIO Interrupt Enable Register (GPIO\_IE):

| Bit | Name        | Access | Description                                                         | Reset value |
|-----|-------------|--------|---------------------------------------------------------------------|-------------|
|     |             |        | GPIO edge interrupt mode enable:                                    |             |
|     |             |        | 0: Level interrupt mode. bIO_INT_ACT=1 and interrupt will be        |             |
|     |             |        | requested constantly if there is a valid GPIO input level.          |             |
|     |             |        | Otherwise bIO_INT_ACT=0 and no interrupt request occurs with        |             |
| 7   | bIE_IO_EDGE | RW     | invalid GPIO input level.                                           | 0           |
|     |             |        | 1: Edge interrupt mode. There are interrupt flag bIO_INT_ACT        |             |
|     |             |        | and interrupt request with valid GPIO input edge, bIO_INT_ACT       |             |
|     |             |        | cannot be cleared by software, but it is automatically cleared      |             |
|     |             |        | when reset or interrupt program is running in level interrupt mode. |             |
|     |             |        | 1: UART1 RX pin interrupt is enabled (valid with low level in       |             |
| 6   | bIE RXD1 LO | RW     | level mode or falling edge in edge mode).                           | 0           |
| 0   | DIE_KADI_LO | K W    | 0: UART1 RX pin interrupt is disabled.                              | 0           |
|     |             |        | Select RXD1 or RXD1_ according to bUART1_PIN_X=0/1.                 |             |
|     |             |        | 1: P1.5 interrupt is enabled (valid with low level in level mode or |             |
| 5   | bIE_P1_5_LO | RW     | falling edge in edge mode).                                         | 0           |
|     |             |        | 0: P1.5 interrupt is disabled.                                      |             |
|     |             |        | 1: P1.4 interrupt is enabled (valid with low level in level mode or |             |
| 4   | bIE_P1_4_LO | RW     | falling edge in edge mode).                                         | 0           |
|     |             |        | 0: P1.4 interrupt is disabled.                                      |             |
|     |             |        | 1: P0.3 interrupt is enabled (valid with low level in level mode or |             |
| 3   | bIE_P0_3_LO | RW     | falling edge in edge mode).                                         | 0           |
|     |             |        | 0: P0.3 interrupt is disabled.                                      |             |
|     |             |        | 1: P5.7 interrupt is enabled (valid with high level in level mode   |             |
| 2   | bIE_P5_7_HI | RW     | or rising edge in edge mode).                                       | 0           |
|     |             |        | 0: P1.5 interrupt is disabled.                                      |             |
|     |             |        | 1: P4.6 interrupt is enabled (valid with low level in level mode or |             |
| 1   | bIE_P4_6_LO | RW     | falling edge in edge mode).                                         | 0           |
|     |             |        | 0: P4.6 interrupt is disabled.                                      |             |

|   |             |    | 1: UART0 RX pin interrupt is enabled (valid with low level in level mode or falling edge in edge mode). |   |
|---|-------------|----|---------------------------------------------------------------------------------------------------------|---|
| 0 | bIE_RXD0_LO | RW | 0: UARTO RX pin interrupt is disabled.<br>Select RXD0 or RXD0_ based on bUART0_PIN_X=0/1.               | 0 |

### Extended External Interrupt Register (INTX):

| Bit | Name     | Access | Description                                                                                                                                                                              | Reset value |
|-----|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | Reserved | RO     | Reserved                                                                                                                                                                                 | 0           |
| 6   | Reserved | RO     | Reserved                                                                                                                                                                                 | 0           |
| 5   | bIX3     | RW     | <ul><li>INT3 Input signal polarity</li><li>0: Default polarity (triggered by low level or falling edge).</li><li>1: Reverse polarity (triggered by high level or rising edge).</li></ul> | 0           |
| 4   | Reserved | RO     | Reserved                                                                                                                                                                                 | 0           |
| 3   | bIE3     | RW     | INT3 interrupt request flag<br>Auto reset after it enters interrupt.                                                                                                                     | 0           |
| 2   | bIT3     | RW     | INT3 trigger mode control<br>0: Triggered by low or high level.<br>1: Triggered by falling or rising edge.                                                                               | 0           |
| 1   | Reserved | RO     | Reserved                                                                                                                                                                                 | 0           |
| 0   | Reserved | RO     | Reserved                                                                                                                                                                                 | 0           |

### Interrupt Priority Control Register (IP):

| Bit | Name    | Access | Description                               | Reset value |
|-----|---------|--------|-------------------------------------------|-------------|
| 7   | PH_FLAG | RO     | High priority interrupt running flag      | 0           |
| 6   | PL_FLAG | RO     | Low priority interrupt running flag       | 0           |
| 5   | PT2     | RW     | Timer2 interrupt priority control bit     | 0           |
| 4   | PS      | RW     | UART0 interrupt priority control bit      | 0           |
| 3   | PT1     | RW     | Timer1 interrupt priority control bit     | 0           |
| 2   | PX1     | RW     | External interrupt 1 priority control bit | 0           |
| 1   | PT0     | RW     | Timer0 interrupt priority control bit     | 0           |
| 0   | PX0     | RW     | External interrupt 0 priority control bit | 0           |

### Extended Interrupt Priority Control Register (IP\_EX):

| Bit | Name      | Access | Description                                        | Reset value |
|-----|-----------|--------|----------------------------------------------------|-------------|
|     |           |        | Current interrupt nesting level flag bit           |             |
| 7   | bIP_LEVEL | RO     | 0: No interrupt or dual interrupt nesting.         | 0           |
|     |           |        | 1: Single interrupt nesting.                       |             |
| 6   | bIP_GPIO  | RW     | GPIO interrupt priority control bit                | 0           |
| 5   | bIP_PWMX  | RW     | PWMX interrupt priority control bit when bU3IE=0.  | 0           |
|     | bIP_UART3 |        | UART3 interrupt priority control bit when bU3IE=1. | 0           |
| 4   | bIP_UART1 | RW     | UART1 interrupt priority control bit               | 0           |
| 3   | bIP_ADC   | RW     | ADC interrupt priority control bit when bU2IE=0.   | 0           |
| 3   | bIP_UART2 | κw     | UART2 interrupt priority control bit when bU2IE=1. | 0           |

| 2 | bIP_USB  | RW | USB interrupt priority control bit                  | 0 |
|---|----------|----|-----------------------------------------------------|---|
| 1 | bIP_INT3 | RW | External interrupt 3 interrupt priority control bit | 0 |
| 0 | bIP_SPI0 | RW | SPI0 interrupt priority control bit                 | 0 |

IP and IP\_EX registers are used to set the interrupt priority. If a bit is set to 1, the corresponding interrupt source is set to a high priority; if a bit is cleared 0, the corresponding interrupt source is set to a low priority. For sibling interrupt sources, the system has a default priority order, which is shown in Table 9.1.1. Where the combination of PH\_FLAG and PL\_FLAG represents the priority of the current interrupt.

| PH_FLAG | PL_FLAG | Current interrupt priority status             |
|---------|---------|-----------------------------------------------|
| 0       | 0       | No current interrupts                         |
| 0       | 1       | Currently executing a low priority interrupt  |
| 1       | 0       | Currently executing a high priority interrupt |
| 1       | 1       | Unexpected status, unknown error              |

### 10. I/O Port

### **10.1 GPIO Introduction**

The CH549 provides up to 44 I/O pins, some of which are multiplexed. Among them, the input and output of port P0~P4 can be addressed bit by bit. If the pin is not configured for multiplexing, the default is the general-purpose I/O pin state. When used as a general-purpose digital I/O, all of the I/O ports have a true "read-modify-write" function, supporting SETB or CLR bit operation instructions to independently change the direction of certain pins or port electrical equality.

### **10.2 GPIO Register**

All registers and bits in this section are expressed in a common format: the lowercase "n" represents the serial number of the port (n = 0, 1, 2, 3, 4), while the lowercase "x" represents the sequence number of the bit (x0,1, 2, 3, 4, 5, 6, 7).

| Name      | Address | Description                                      | Reset value |
|-----------|---------|--------------------------------------------------|-------------|
| P0        | 80h     | P0 input/output register                         | FFh         |
| P0_DIR_PU | C5h     | P0 direction control and pull-up enable register | FFh         |
| P0_MOD_OC | C4h     | P0 output mode register                          | FFh         |
| P1        | 90h     | P1 input/output register                         | FFh         |
| P1_DIR_PU | 93h     | P1 direction control and pull-up enable register | FFh         |
| P1_MOD_OC | 92h     | P1 output mode register                          | FFh         |
| P2        | A0h     | P2 input/output register                         | FFh         |
| P2_DIR_PU | 95h     | P2 direction control and pull-up enable register | FFh         |
| P2_MOD_OC | 94h     | P2 output mode register                          | FFh         |
| P3        | B0h     | P3 input/output register                         | FFh         |
| P3_DIR_PU | 97h     | P3 direction control and pull-up enable register | FFh         |
| P3_MOD_OC | 96h     | P3 output mode register                          | FFh         |
| P4        | C0h     | P4 input/output register                         | FFh         |
| P4_DIR_PU | C3h     | P4 direction control and pull-up enable register | FFh         |
| P4_MOD_OC | C2h     | P4 output mode register                          | FFh         |
| P5        | ABh     | P5 input/output register                         | 20h         |
| PIN_FUNC  | AAh     | Pin function selection register                  | 00h         |
| XBUS_AUX  | A2h     | Bus auxiliary setting register                   | 00h         |

| Table 10.2.1 List of GPIO Register |
|------------------------------------|
|------------------------------------|

#### Pn Input/Output Register (Pn):

| Bit   | Name      | Access | Description                                                                                                                                                                                  | Reset value |
|-------|-----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | Pn.0~Pn.7 | RW     | Pn.x pin state input and data output bits, support<br>addressing by bit.<br>Notes: P4.7 is the internal bit, the write operation must<br>be set to 1, and the read operation is meaningless. | FFh         |

#### Pn Output Mode Register (Pn\_MOD\_OC):

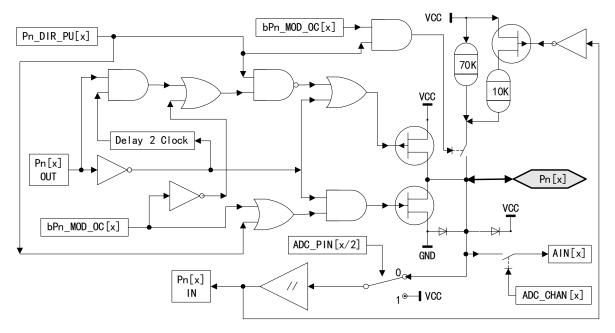
|  | Bit | Name | Access | Description | Reset value |
|--|-----|------|--------|-------------|-------------|
|--|-----|------|--------|-------------|-------------|

| ľ | [7:0] | Pn MOD OC | RW | Pn.x pin output mode setting:<br>0: Push-pull output; | FFh |
|---|-------|-----------|----|-------------------------------------------------------|-----|
|   | L J   |           |    | 1: Open-drain output.                                 |     |

### Pn Direction Control and Pull-up Enable Register (Pn DIR PU):

| Bit   | Name      | Access | Description                                                                                                                                                                                                                                                             | Reset value |
|-------|-----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | Pn_DIR_PU | RW     | <ul> <li>Pn.x direction control in push-pull output mode:</li> <li>0: Input.</li> <li>1: Output.</li> <li>Pn.x pull-up resistor enable control in open-drain output mode:</li> <li>0: Disable the pull-up resistor;</li> <li>1: Enable the pull-up resistor.</li> </ul> | FFh         |

### Port Pn configuration is realized by Pn MOD OC[x] and Pn DIR PU[x], details as follows.


level to high level

|           | Table 10.2.2 Port configuration register combination |                                                                           |  |  |  |
|-----------|------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|
| Pn_MOD_OC | Pn_DIR_PU                                            | Working mode description                                                  |  |  |  |
| 0         | 0                                                    | High impedance input mode, pins without pull-up resistor                  |  |  |  |
| 0         | 1                                                    | Push-pull output mode with symmetry driving ability, a port can output or |  |  |  |
| 0         | 1                                                    | absorb large current in this mode                                         |  |  |  |
| 1         | 0                                                    | Open-drain output, support high impedance input, pins without pull-up     |  |  |  |
| 1         |                                                      | resistor                                                                  |  |  |  |
|           |                                                      | Standard bi-direction mode (standard 8051), open-drain output, support    |  |  |  |
| 1         | 1                                                    | input, pins with pull-up resistor. It will automatically generate 2 clock |  |  |  |
| 1 1       |                                                      |                                                                           |  |  |  |

The P1~P4 port supports pure input or push-pull output and standard bidirectional modes. Each pin has an internal pull-up resistor that can be freely controlled and a protective diode connected to the VDD and GND.

period of high level to accelerate conversion when output transfer from low

Figure 10.2.1 is the equivalent schematic diagram of the P0.x pin of the P0 port and the P1.x pin of the P1 port, which can be applied to the P2, P3 and P4 ports without AIN, ADC PIN and ADC CHAN.



#### Figure 10.2.1 Equivalent schematic diagram of I/O pins

#### P5 Input/Output Register (P5):

| Bit | Name     | Access | Description                                                                                                                                                                                   | Reset value |
|-----|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | P5.7     | R0     | P5.7 pin state input bit                                                                                                                                                                      | 0           |
| 6   | Reserved | RO     | Reserved                                                                                                                                                                                      | 0           |
| 5   | P5.5     | RW     | <ul><li>P5.5 pin data output bit (open-drain output, support high voltage):</li><li>0: Output low level.</li><li>1: No output (high impedance, supports external pull-up resistor).</li></ul> | 1           |
| 4   | P5.4     | RW     | <ul><li>P5.4 pin data output bit:</li><li>0: Output low level.</li><li>1: Output high level.</li></ul>                                                                                        | 0           |
| 3   | Reserved | RO     | Reserved                                                                                                                                                                                      | 0           |
| 2   | Reserved | RO     | Reserved                                                                                                                                                                                      | 0           |
| 1   | P5.1     | R0     | P5.1 pin state input bit, built-in controllable pull-down resistor                                                                                                                            | 0           |
| 0   | P5.0     | R0     | P5.0 pin state input bit, built-in controllable pull-down resistor                                                                                                                            | 0           |

# **10.3 GPIO Alternate Functions and Mapping**

The CH549 part of the I/O pin has the alternate function, and after power-on, the default is the general-purpose I/O pin. After enabling different functional modules, the corresponding pins are configured as functional pins corresponding to their respective functional modules.

Pin Function Selection Register (PIN\_FUNC):

| BitNameAccessDescriptionReset |
|-------------------------------|
|-------------------------------|

|   |              |       | PWM0 pin mapping enable                                     |   |
|---|--------------|-------|-------------------------------------------------------------|---|
| 7 | bPWM0 PIN X  | RW    | 0: PWM0 enables P2.5.                                       | 0 |
| , |              | i con | 1: PWM0 enables P1.5.                                       | 0 |
|   |              |       | GPIO interrupt request activation state:                    |   |
|   |              |       | When bIE IO EDGE=0,                                         |   |
|   |              |       | 1: GPIO with valid level and interrupt request.             |   |
|   |              |       | 0: GPIO with invalid level.                                 |   |
|   |              |       |                                                             |   |
| 6 | bIO_INT_ACT  | R0    | When bIE_IO_EDGE=1, this bit is used as edge interrupt      | 0 |
|   |              |       | flag,                                                       |   |
|   |              |       | 1: Valid edge is detected and this bit cannot be reset by   |   |
|   |              |       | software, but can only be reset automatically when reset or |   |
|   |              |       | in level interrupt mode or when it enters corresponding     |   |
|   |              |       | interrupt service program.                                  |   |
|   |              |       | UART1 pin mapping enable                                    |   |
| 5 | bUART1_PIN_X | RW    | 0: RXD1/TXD1 enable P2.6/P2.7.                              | 0 |
|   |              |       | 1: RXD1/TXD1 enable P1.6/P1.7.                              |   |
|   |              |       | UART0 pin mapping enable                                    |   |
| 4 | bUART0_PIN_X | RW    | 0: RXD0/TXD0 enable P3.0/P3.1.                              | 0 |
|   |              |       | 1: RXD0/TXD0 enable P0.2/P0.3.                              |   |
| 3 | Reserved     | RO    | Reserved                                                    | 0 |
|   |              |       | INT0 pin mapping enable                                     |   |
| 2 | bINT0_PIN_X  | RW    | 0: INT0 enables P3.2.                                       | 0 |
|   |              |       | 1: INT0 enables P2.2.                                       |   |
|   |              |       | T2EX/CAP2 pin mapping enable                                |   |
| 1 | bT2EX_PIN_X  | RW    | 0: T2EX/CAP2 enables P1.1.                                  | 0 |
|   |              |       | 1: T2EX/CAP2 enables P2.5.                                  |   |
|   |              |       | T2/CAP1 pin mapping enable                                  |   |
| 0 | bT2_PIN_X    | RW    | 0: T2/CAP1 enables P1.0.                                    | 0 |
|   |              |       | 1: T2/CAP1 enables P2.4.                                    |   |

# Table 10.3.1 List of GPIO pins alternate functions

| GPIO  | Other functions: left-to-right priority |  |  |
|-------|-----------------------------------------|--|--|
| P0[0] | AIN8, P0.0                              |  |  |
| P0[1] | AIN9, P0.1                              |  |  |
| P0[2] | RXD_/bRXD_、AIN10、P0.2                   |  |  |
| P0[3] | TXD_/bTXD_, AIN11, P0.3                 |  |  |
| P0[4] | RXD2/bRXD2, AIN12, P0.4                 |  |  |
| P0[5] | TXD2/bTXD2, AIN13, P0.5                 |  |  |
| P0[6] | RXD3/bRXD3、AIN14、P0.6                   |  |  |
| P0[7] | TXD3/bTXD3, AIN15, P0.7                 |  |  |
| P1[0] | T2/bT2、CAP1/bCAP1、AIN0、P1.0             |  |  |
| P1[1] | T2EX/bT2EX, CAP2/bCAP2, AIN1, P1.1      |  |  |
| P1[2] | AIN2, P1.2                              |  |  |

| P1[3] | AIN3, P1.3                                   |
|-------|----------------------------------------------|
| P1[4] | SCS/bSCS、UCC1/bUCC1、AIN4、P1.4                |
| P1[5] | MOSI/bMOSI、PWM0 /bPWM0 、UCC2/bUCC2、AIN5、P1.5 |
| P1[6] | MISO/bMISO、RXD1 /bRXD1 、VBUS/bVBUS、AIN6、P1.6 |
| P1[7] | SCK/bSCK、TXD1_/bTXD1_、AIN7、P1.7              |
| P2[0] | PWM5/bPWM5、P2.0                              |
| P2[1] | PWM4/bPWM4、P2.1                              |
| P2[2] | PWM3/bPWM3、INT0_/bINT0、P2.2                  |
| P2[3] | PWM2/bPWM2、P2.3                              |
| P2[4] | PWM1/bPWM1、T2_/bT2_、CAP1_/bCAP1_、P2.4        |
| P2[5] | PWM0/bPWM0、T2EX_/bT2EX_、CAP2_/bCAP2_、P2.5    |
| P2[6] | PWM6/bPWM6、RXD1/bRXD1、P2.6                   |
| P2[7] | PWM7/bPWM7、TXD1/bTXD1、P2.7                   |
| P3[0] | RXD/bRXD, P3.0                               |
| P3[1] | TXD/bTXD, P3.1                               |
| P3[2] | INTO/bINTO, P3.2                             |
| P3[3] | INT1/bINT1, P3.3                             |
| P3[4] | Т0/bT0, Р3.4                                 |
| P3[5] | T1/bT1, P3.5                                 |
| P3[6] | CAP0/bCAP0, P3.6                             |
| P3[7] | INT3/bINT3、P3.7                              |
| P4[0] | P4.0                                         |
| P4[1] | P4.1                                         |
| P4[2] | P4.2                                         |
| P4[3] | P4.3                                         |
| P4[4] | P4.4                                         |
| P4[5] | P4.5                                         |
| P4[6] | XI, P4.6                                     |
| P5[0] | UDM/bUDM、P5.0                                |
| P5[1] | UDP/bUDP、P5.1                                |
| P5[4] | bALE/bCKO, P5.4                              |
| P5[5] | bHVOD、P5.5                                   |
| P5[7] | RST/bRST、P5.7                                |

The priority described in the above table, from left to right, refers to the priority of multiple functional modules competing for the use of the GPIO. For example, the P2.6/P2.7 port is set for UART1, and if only RXD1 is needed, then P2.7 can still be used for higher priority PWM7 functions.

# 11. External Bus (xBUS)

CH549 does not provide bus signals to the outside of the chip and does not support external buses, but it can access the on-chip xRAM normally.

| Bit | Name           | Access                        | Description                                                            | Reset value |
|-----|----------------|-------------------------------|------------------------------------------------------------------------|-------------|
| 7   | bUART0 TX      | R0                            | UART0 Tx status                                                        | 0           |
|     | UUARIO_IA      | KU                            | 1: It is transmitting.                                                 | 0           |
| 6   | bUART0 RX      | R0                            | UART0 Rx status                                                        | 0           |
| 0   | UUAKI0_KA      | KU                            | 1: It is receiving.                                                    | 0           |
| 5   | bSAFE MOD ACT  | E MOD ACT R0 Safe mode status | Safe mode status                                                       | 0           |
| 5   | USATE_WOD_ACT  | KU                            | 1: It is in safe mode.                                                 | 0           |
|     |                |                               | ALE pin clock output enable                                            |             |
| 4   | bALE_CLK_EN    | RW                            | 1: Enable P5.4 output divided system frequency.                        | 0           |
|     |                |                               | 0: Clock signal is disabled.                                           |             |
|     |                |                               | When bALE_CLK_EN=1, ALE pin clock frequency is                         |             |
| 3   | bALE_CLK_SEL   | RW                            | selected;                                                              | 0           |
| 5   |                |                               | If the bit is 0, select 12 frequency division. If the bit is 1, select |             |
|     |                |                               | 4 frequency division                                                   |             |
| 3   | GF2            | RW                            | General flag bit 2 when bALE_CLK_EN=0:                                 | 0           |
|     | 012            | 1                             | User-defined. Can be reset and set by software.                        |             |
| 2   | bDPTR AUTO INC | RW                            | Enable DPTR add by 1 automatically after MOVX_@DPTR                    | 0           |
|     |                |                               | command.                                                               |             |
| 1   | Reserved       | RO                            | Reserved                                                               | 0           |
|     |                |                               | Dual DPTR data pointer selection:                                      |             |
| 0   | DPS            | RW                            | 0: DPTR0.                                                              | 0           |
|     |                |                               | 1: DPTR1.                                                              |             |

External Bus Auxiliary Configuration Register (XBUS\_AUX):

|       |             |              | -                          |
|-------|-------------|--------------|----------------------------|
| P5[4] | bALE_CLK_EN | bALE_CLK_SEL | P5.4 引脚功能描述                |
| 0     | 0           | 0            | Output low level (default) |
| 0     | 1           | 0            | Fsys/12                    |
| 0     | 1           | 1            | Fsys/4                     |
| 1     | X           | X            | Output high level          |

# 12. Timer

# 12.1 Timer0/1

Timer0/1 is two 16-bit timing / counters. Through TCON and TMOD, Timer0 and Timer1, TCON are configured for timing / counter T0 and T1 startup control and overflow interrupt control as well as external interrupt control. Each timer is a 16-bit timing unit composed of two 8-bit registers. The high byte counter of timer 0 is TH0, and the low byte is TL0; timer 1. The high byte counter is TH1, and the low byte is TL1. Timer 1 can also be used as a baud rate generator for UART0.

| Name | Address | Description               | Reset value |
|------|---------|---------------------------|-------------|
| TH1  | 8Dh     | Timer1 count high byte    | xxh         |
| TH0  | 8Ch     | Timer0 count high byte    | xxh         |
| TL1  | 8Bh     | Timer1 count low byte     | xxh         |
| TL0  | 8Ah     | Timer0 count low byte     | xxh         |
| TMOD | 89h     | Timer0/1 method register  | 00h         |
| TCON | 88h     | Timer0/1 control register | 00h         |

Table 12.1.1 List of Timer0/1registers

Timer/Counter 0/1 Control Register (TCON):

| Bit | Name    | Access | Description                                          | Reset value |                                       |   |
|-----|---------|--------|------------------------------------------------------|-------------|---------------------------------------|---|
| 7   | 7 TF1   | F1 RW  | Timer1 overflow interrupt flag                       | 0           |                                       |   |
| /   | 111     |        | Auto reset after it enters Timer1 interrupt service. | 0           |                                       |   |
| 6   | TR1     | RW     | Timer1 startup/stop bit                              | 0           |                                       |   |
| 0   | IKI     |        | Set 1 to start. Set and reset by software.           | 0           |                                       |   |
| 5   | TF0     | RW     | Timer0 overflow interrupt flag                       | 0           |                                       |   |
| 5   | 110     |        | Auto reset after it enters Timer0 interrupt.         | 0           |                                       |   |
| 4   | TR0     | RW     | Timer0 startup/stop bit                              | 0           |                                       |   |
|     |         |        | Set 1 to start. Set and reset by software.           | 0           |                                       |   |
| 3   | IE1     | IE1 RW | INT1 interrupt request flag                          | 0           |                                       |   |
| 5   | 3 IEI K | ILI    | IET                                                  |             | Auto reset after it enters interrupt. | V |
|     |         |        | INT1 trigger mode control                            |             |                                       |   |
| 2   | IT1     | RW     | 0: Low level action.                                 | 0           |                                       |   |
|     |         |        | 1: Falling edge action.                              |             |                                       |   |
| 1   | IE0     | RW     | INT0 interrupt request flag                          | 0           |                                       |   |
|     | I IEU   |        | Auto reset after it enters interrupt.                | U           |                                       |   |
|     |         |        | INT0 trigger mode control                            |             |                                       |   |
| 0   | IT0     | RW     | 0: Low level action.                                 | 0           |                                       |   |
|     |         |        | 1: Falling edge action.                              |             |                                       |   |

## Timer/Counter 0/1 Mode Register (TMOD):

| Bit | Name     | Access | Description                                                                                                                                                                 | Reset value |
|-----|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | bT1_GATE | RW     | <ul><li>Gate enable bit control, whether Timer1 start is affected by the external interrupt signal INT1.</li><li>0: Timer1 will start or not independent of INT1;</li></ul> | 0           |

|   |          |    | 1: It will only start if the INT1 pin is high and TR1 is 1.      |   |
|---|----------|----|------------------------------------------------------------------|---|
|   |          |    |                                                                  |   |
|   |          |    | Counter or timer mode selection for Timer1:                      |   |
| 6 | bT1_CT   | RW | 0: Timer, use internal clock.                                    | 0 |
|   |          |    | 1: Counter, use T1 pin falling edge as clock                     |   |
| 5 | bT1_M1   | RW | Timer/Counter1 mode high bit                                     | 0 |
| 4 | bT1_M0   | RW | Timer/Counter1 mode low bit                                      | 0 |
|   |          |    | Gate enable bit control, whether Timer0 start is affected by the |   |
| 2 |          | RW | external interrupt signal INT0.                                  | 0 |
| 3 | bT0_GATE | ĸw | 0: Timer0 will start or not independent of INT0;                 | 0 |
|   |          |    | 1: It will only start if the INT0 pin is high and TR0 is 1.      |   |
|   |          |    | Counter or timer mode selection for Timer0:                      |   |
| 2 | bT0_CT   | RW | 0: Timer, use internal clock.                                    | 0 |
|   |          |    | 1: Counter, use T0 pin falling edge as clock                     |   |
| 1 | bT0_M1   | RW | Timer/Counter0 mode high bit                                     | 0 |
| 0 | bT0_M0   | RW | Timer/Counter0 mode low bit                                      | 0 |

Table 12.1.2 Timern operating mode selection for bTn\_M1 and bTn\_M0 (n=0, 1)

| bTn_M1 | bTn_M0 | Timern operating mode (n=0, 1)                                                           |
|--------|--------|------------------------------------------------------------------------------------------|
|        |        | Mode 0: 13-bit timer or counter n by cascaded THn and lower 5 bits of TLn, the upper     |
| 0      | 0      | 3 bits of TLn are ignored. When the counts of all 13 bits change from 1 to 0, set the    |
|        |        | overflow flag TFn and reset the initial value.                                           |
| 0      | 1      | Mode 1: 16-bit timer or counter n by cascaded THn and TLn. When the counts of all        |
| 0      | 1      | 16 bits change from 1 to 0, set the overflow flag TFn and reset the initial value.       |
|        | 0      | Mode 2: 8-bit overload timer/counter n, TLn is used for count unit, and THn is used      |
| 1      |        | as the overload count unit. When the counts of all 8 bits change from 1 to 0, set the    |
|        |        | overflow flag TFn and automatically load the initial value from THn.                     |
|        |        | Mode 3: For timer/counter 0, it is divided into TL0 and TH0. TL0 is used as an 8-bit     |
|        |        | timer/counter, occupying all control bits of Timer0. TH0 is also used as an 8-bit timer, |
| 1      | 1      | occupying TR1, TF1 and interrupt resources of Timer1. In this case, Timer1 is still      |
|        |        | available, but the startup control bit TR1 and overflow flag bit TF1 cannot be used.     |
|        |        | For timer/counter 1, it stops after it enters mode3.                                     |

# Timern Count Low Byte (TLn) (n=0, 1):

| ľ | Bit   | Name | Access | Description           | Reset value |
|---|-------|------|--------|-----------------------|-------------|
|   | [7:0] | TLn  | RW     | Timern count low byte | xxh         |

# Timern Count High Byte (THn) (n=0, 1):

| Bit   | Name | Access | Description            | Reset value |
|-------|------|--------|------------------------|-------------|
| [7:0] | THn  | RW     | Timern count high byte | xxh         |

## 12.2 Timer2

Timer2 is a 16-bit automatic overload timer / counter and is configured through T2CON and T2MOD registers. The high byte counter of timer 2 is TH2 and the low byte is TL2. Timer2 can be used as the baud rate generator of UART0. It also has the function of 3-channel signal level capture. The capture count is stored in RCAP2, T2CAP1 and T2CAP0 registers.

| Name    | Address | Description                                      | Reset value |
|---------|---------|--------------------------------------------------|-------------|
| TH2     | CDh     | Timer2 counter high byte                         | 00h         |
| TL2     | CCh     | Timer2 counter low byte                          | 00h         |
| T2COUNT | CCh     | 16-bit SFR consists of TL2 and TH2               | 0000h       |
| T2CAP1H | CFh     | Timer2 captures 1 data in high bytes (read-only) | xxh         |
| T2CAP1L | CEh     | Timer2 captures 1 data in low bytes (read-only)  | xxh         |
| T2CAP1  | CEh     | 16-bit SFR consists of T2CAP1L and T2CAP1H       | xxxxh       |
| Т2САР0Н | C7h     | Timer2 captures 0 data in high bytes (read-only) | xxh         |
| T2CAP0L | C6h     | Timer2 captures 0 data in low bytes (read-only)  | xxh         |
| T2CAP0  | C6h     | 16-bit SFR consists of T2CAP0L and T2CAP0H       | xxxxh       |
| RCAP2H  | CBh     | Count reload/capture 2 data register high byte   | 00h         |
| RCAP2L  | CAh     | Count reload/capture 2 data register low byte    | 00h         |
| RCAP2   | CAh     | 16-bit SFR consists of RCAP2L and RCAP2H         | 0000h       |
| T2MOD   | C9h     | Timer2 method register                           | 00h         |
| T2CON   | C8h     | Timer2 control register                          | 00h         |
| T2CON2  | C1h     | Timer2 extended control register                 | 00h         |

#### Timer/Counter2 Control Register (T2CON):

| Bit | Name  | Access | Description                                                                                                                                                                                                                                                 | Reset value |
|-----|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | TF2   | RW     | When bT2_CAP1_EN=0, it is the overflow interrupt flag of Timer2. When the Timer2 count is changed from 16 bits to all zeros, the overflow flag is set to 1, which needs to be cleared by the software. When RCLK=1 or TCLK=1, the bit will not be set to 1. | 0           |
| 7   | CAP1F | RW     | When bT2_CAP1_EN=1, it is the Timer2 capture 1 interrupt flag, triggered by the T2 effective edge, and requires software zeroing.                                                                                                                           | 0           |
| 6   | EXF2  | RW     | The external trigger flag of Timer2, which is set to 1 by the effective edge of T2EX when EXEN2=1, which requires software to clear zero.                                                                                                                   | 0           |
| 5   | RCLK  | RW     | UART0 Rx clock selection<br>0: Timer1 overflow pulse.<br>1: Timer2 overflow pulse.                                                                                                                                                                          | 0           |
| 4   | TCLK  | RW     | UART0 Tx clock selection<br>0: Timer1 overflow pulse.<br>1: Timer2 overflow pulse.                                                                                                                                                                          | 0           |
| 3   | EXEN2 | RW     | T2EX trigger enable                                                                                                                                                                                                                                         | 0           |

|   |        |           | 0: Ignore T2EX.                                                |   |
|---|--------|-----------|----------------------------------------------------------------|---|
|   |        |           | 1: Enable trigger reload or capture by T2EX edge.              |   |
| 2 | TR2    | RW        | Timer2 startup/stop bit                                        | 0 |
| 2 | 112    |           | Set 1 to start. Set and reset by software.                     | 0 |
|   |        |           | Timer2 clock source selection                                  |   |
| 1 | C_T2   | RW        | 0: Internal clock.                                             | 0 |
|   |        |           | 1: Edge counter based on T2 falling edge.                      |   |
|   |        |           | Timer2 function select bit, if RCLK or TCLK is 1, this bit     |   |
|   | CP_RL2 |           | should be forced to 0.                                         |   |
|   |        |           | 0: Timer2 acts as a timer/counter and can automatically reload |   |
| 0 |        | CP_RL2 RW | the count initial value when the counter overflows or the T2EX | 0 |
|   |        |           | level changes;                                                 |   |
|   |        |           | 1: Timer2's capture 2 function is enabled to capture the valid |   |
|   |        |           | edge of T2EX.                                                  |   |

# Timer/Counter2 Method Register (T2MOD):

| Bit | Name           | Access |                                                                                            | Description                                                                                                                                                                                                        | Reset value |  |
|-----|----------------|--------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| 7   | bTMR_CLK       | RW     | mode:<br>0: Use divided clock.<br>1: Use original Fsys as                                  | mode for T0/T1/T2 under faster clock<br>clock without dividing.<br>on selecting standard clock timer                                                                                                               | 0           |  |
| 6   | bT2_CLK        | RW     | select standard clock, ti<br>clock mode is Fsys/4<br>timing/counting mode                  | frequency selection bit, this bit is 0 to<br>iming/counting mode is Fsys/12, UART0<br>4; this bit is 1 to select fast clock,<br>e is Fsys/4 (bTMR_CLK=0) or Fsys<br>UART0 clock mode is Fsys/2<br>sys (bTMR_CLK=1) | 0           |  |
| 5   | bT1_CLK        | RW     | Timer1 internal clock f<br>0 = Standard clock, Fs<br>1 = Faster clock, Fs<br>bTMR_CLK = 1. |                                                                                                                                                                                                                    | 0           |  |
| 4   | bT0_CLK        | RW     | 0 = Standard clock, Fs                                                                     | Timer0 internal clock frequency selection:<br>0 = Standard clock, Fsys/12.<br>1 = Faster clock, Fsys/4 if bTMR_CLK = 0, or Fsys if                                                                                 |             |  |
| 3   | bT2_CAP_M<br>1 | RW     | Timer2 capture<br>mode high bit                                                            | Capture mode selection:<br>X0: From falling edge to falling edge.                                                                                                                                                  | 0           |  |
| 2   | bT2_CAP_M<br>0 | RW     | Timer2 capture<br>mode low bit                                                             | <ul><li>01: From any edge to any edge (level change).</li><li>11: From rising edge to rising edge.</li></ul>                                                                                                       | 0           |  |
| 1   | T2OE           | RW     | Timer2 clock output er<br>0: Disable output.<br>1: Enable clock output                     | 0                                                                                                                                                                                                                  |             |  |

| 0 | bT2_CAP1_E | RW | Capture 1 mode enabled when RCLK=0, TCLK=0, CP_RL2=1,<br>1: Enable capture 0 function to capture T2 valid edges; | 0 |
|---|------------|----|------------------------------------------------------------------------------------------------------------------|---|
|   | 1          |    | 0: Disable capture 0                                                                                             |   |

Count Reload/Capture 2 Data Register (RCAP2):

| Bit   | Name   | Access | Description                                                                                              | Reset value |
|-------|--------|--------|----------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | RCAP2H | RW     | High byte of reload value in timer/counter mode.<br>High byte of timer captured by CAP2 in capture mode. | 00h         |
| [7:0] | RCAP2L | RW     | Low byte of reload value in timer/counter mode.<br>Low byte of timer captured by CAP2 in capture mode    | 00h         |

## 12.3 PWM Register

The PWM\_DATA registers in this section are expressed in a common format: the lowercase "n" indicates the serial number of the port ( $n=0\sim7$ ).

| Table 12.3.1 | List of PWMX registers |
|--------------|------------------------|
|              |                        |

| Name      | Address | Description                        | Reset value |
|-----------|---------|------------------------------------|-------------|
| PWM_CK_SE | 9Eh     | PWM clock divisor setting register | 00h         |
| PWM_CTRL  | 9Dh     | PWM control register               | 02h         |
| PWM_CTRL2 | 9Fh     | PWM extended control register      | 00h         |
| PWM_DATA0 | 9Ch     | PWM0 data register                 | xxh         |
| PWM_DATA1 | 9Bh     | PWM1 data register                 | xxh         |
| PWM_DATA2 | 9Ah     | PWM2 data register                 | xxh         |
| PWM_DATA3 | A3h     | PWM3 data register                 | xxh         |
| PWM_DATA4 | A4h     | PWM4 data register                 | xxh         |
| PWM_DATA5 | A5h     | PWM5 data register                 | xxh         |
| PWM_DATA6 | A6h     | PWM6 data register                 | xxh         |
| PWM_DATA7 | A7h     | PWM7 data register                 | xxh         |

### PWMn Data Register (PWM\_DATAn):

| Bit   | Name      | Name   Access   Description |                                                                                                    | Reset value |
|-------|-----------|-----------------------------|----------------------------------------------------------------------------------------------------|-------------|
| [7:0] | PWM_DATAn | RW                          | Store the current data of PWMn.<br>Duty cycle of PWMn output active level =<br>PWM_DATAn/PWM_CYCLE | xxh         |

#### PWM Control Register (PWM\_CTRL):

| Bit | Name        | Access           | Description                                                        | Reset value |
|-----|-------------|------------------|--------------------------------------------------------------------|-------------|
| 7   | Reserved    | rved RO Reserved |                                                                    | 0           |
| 6   |             | DW               | PWM1 output polarity control                                       | 0           |
| 6   | bPWM1_POLAR | RW               | 0: Default low and active high.<br>1: Default high and active low. | 0           |
|     |             |                  | PWM0 output polarity control                                       |             |
| 5   | bPWM0_POLAR | RW               | 0: Default low and active high.                                    | 0           |
|     |             |                  | 1: Default high and active low.                                    |             |

|   |               |     | PWM cycle end interrupt flag                         |   |
|---|---------------|-----|------------------------------------------------------|---|
| 4 | bPWM_IF_END   | RW  | 1: There is a PWM cycle end interrupt.               | 0 |
|   |               |     | Write 1 to reset, or reload PWM_DATA0 data to reset. |   |
| 3 | LOWM1 OUT EN  | RW  | PWM1 output enable                                   | 0 |
| 5 | bPWM1_OUT_EN  | κ.w | 1: Enable PWM1 output.                               | 0 |
| 2 | LOWMO OUT EN  | RW  | PWM0 output enable                                   | 0 |
| 2 | bPWM0_OUT_EN  | ĸw  | 1: Enable PWM0 output.                               | 0 |
| 1 | bPWM_CLR_ALL  | RW  | 1: Clear PWM count and FIFO. Reset by software.      | 1 |
|   |               |     | PWM data width mode:                                 |   |
| 0 | bPWM_MOD_6BIT | RW  | 0: 8-bit data, and PWM cycle is 256.                 | 0 |
|   |               |     | 1: 6-bit data, and PWM cycle is 64.                  |   |

### PWM Extended Control Register (PWM\_CTRL2):

| Bit | Name                | Access       | Description            | Reset value        |   |
|-----|---------------------|--------------|------------------------|--------------------|---|
| 7   | Reserved            | RO           | Reserved               | 0                  |   |
| 6   | Reserved            | RO           | Reserved               | 0                  |   |
| 5   | bPWM7 OUT EN        | RW           | PWM7 output enable     | 0                  |   |
| 5   | DF WW7_OUT_EN       | K W          | 1: Enable PWM7 output. | 0                  |   |
| 4   | A LOWING OUT EN     | RW           | PWM6 output enable     | 0                  |   |
| 4   | bPWM6_OUT_EN        | K W          | 1: Enable PWM6 output. | 0                  |   |
| 3   |                     | bPWM5 OUT EN | RW                     | PWM5 output enable | 0 |
| 5   | OF WIM5_OUT_EN      | K W          | 1: Enable PWM5 output. | 0                  |   |
| 2   | bPWM4 OUT EN        | RW           | PWM4 output enable     | 0                  |   |
|     |                     |              | 1: Enable PWM4 output. | 0                  |   |
| 1   | bPWM3 OUT EN        | RW           | PWM3 output enable     | 0                  |   |
|     |                     |              | 1: Enable PWM3 output. | 0                  |   |
| 0   | bPWM2 OUT EN        | RW           | PWM2 output enable     | 0                  |   |
|     | 01  w w w 2 001  EN |              | 1: Enable PWM2 output. | 0                  |   |

PWM Clock Divisor Setting Register (PWM\_CK\_SE):

| Bit  | Name      | Access | Description                             | Reset value |
|------|-----------|--------|-----------------------------------------|-------------|
| [7:0 | PWM_CK_SE | RW     | Set PWM clock frequency division factor | 00h         |

## **12.4 PWM Function**

CH549 provides 8-channel PWM, which can dynamically modify the output duty cycle of PWM. After integral low-pass filtering through simple RC resistance and capacitance, various output voltages can be obtained, which is equivalent to low-speed digital-to-analog converter DAC. Among them, PWM0 and PWM1 can also choose reverse polarity output and the default output polarity is low level or high level.

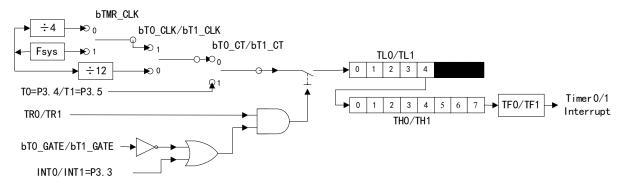
PWM\_CYCLE = bPWM\_MOD\_6BIT ? 64 : 256

PWMn output duty cycle= PWM\_DATAn / PWM\_CYCLE

The range of duty cycle is 0 to 99.6% in 8-bit data mode and 0 to 100% duty cycle in 6-bit data mode (100% if the PWM\_DATAn value is greater than PWM\_CYCLE).

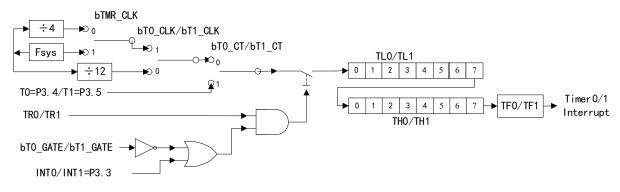
In practical application, it is recommended to allow PWM pin output and set PWM output pin to push-pull output mode.

# 12.5 Timer


# 12.5.1 Timer0/1

(1) Set the T2MOD to choose the internal clock rate of Timer. If the  $bTn_CLK$  (n=0/1) is 0, then the clock corresponding to Timer0/1 is Fsys/12;. If the clock is 1, then  $bTMR_CLK=0$  or 1 chooses Fsys/4 or Fsys as the clock.

(2) Sets the operating mode of the TMOD configuration Timer.


Mode 0:13-bit timer / counter





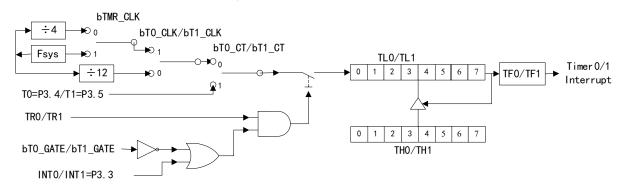

Mode1: 16-bit timer/counter

Figure 12.5.1.2 Timer0/1 mode1



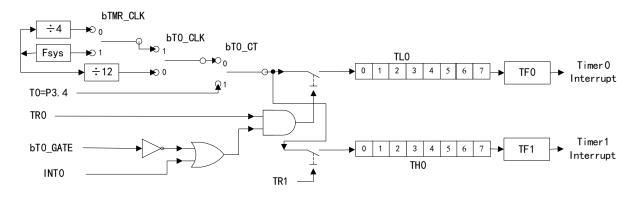

#### Mode2: Auto-reload 8-bit timer/counter

Figure 12.5.1.3 Timer0/1 mode2



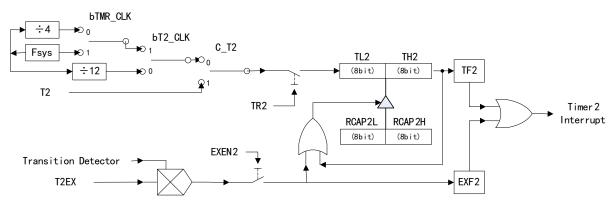
Mode 3: Timer0 is decomposed into two independent 8-bit timing / counters and borrows the TR1 control bit of Timer1; Timer1 passes whether to start mode 3 instead of the borrowed TR1 control bit, and if Timer1 enters mode 3, the Timer1 stops running.

#### Figure 12.5.1.4 Timer0 mode3



(3) Set the initial values of the timer / counter TLn and THn (n=0/1).

(4) Set the bit TRn (n=0/1) in TCON to turn on or off the timing / counter, which can be detected by the bit TFn


(n=0/1) query or by interrupt mode.

#### 12.5.2 Timer2

Timer2 16-bit overload timing / counter mode:

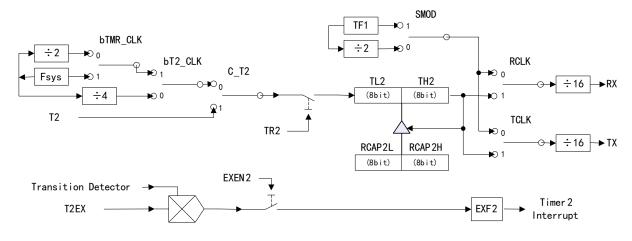
- (1) Set the bit RCLK and TCLK in T2CON to 0, and select the non-serial baud rate generator mode.
- (2) Set the bit C\_T2 in the T2CON to 0 to choose to use the internal clock, turn to step 3; you can also set 1 to select the falling edge of the T2 pin as the counting clock, skipping step 3.
- (3) Set T2MOD to choose the internal clock rate of Timer. If bT2\_CLK is 0, then the clock of Timer2 is Fsys/12; If bT2\_CLK is 1, then bTMR\_CLK=0 or 1 choose Fsys/4 or Fsys as the clock.
- (4) Set the bit CP RL2 of T2CON to 0, and select the 16-bit overload timing / counter function of Timer2.
- (5) Set RCAP2L and RCAP2H as the overload values after the timer overflow, set TL2 and TH2 as the initial values of the timer (usually the same as RCAP2L and RCAP2H), set TR2 to 1, and turn on Timer2.
- (6) The current timer / counter status can be obtained by querying TF2 or timer 2 interrupt.

Fig.12.5.2.1 Timer2 16-bit reload timer/counter



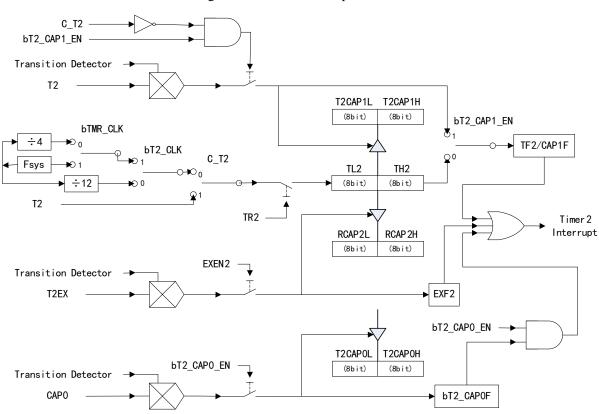
Timer2 clock output mode:

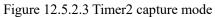
Referring to the 16-bit overload timing / counter mode, and setting the bit T2OE in the T2MOD to 1, the binary clock of the TF2 frequency can be output from the T2 pin.


Timer2 serial port 0 baud rate generator mode:

(1) Set the bit C\_T2 in the T2CON to 0 to choose to use the internal clock, or set the falling edge of the T2 pin as the clock, set the bit RCLK and TCLK in the T2CON to 1 or one of them as needed, and select the serial baud

rate generator mode.


- (2) Set T2MOD to choose the internal clock rate of Timer. If bT2\_CLK is 0, then the clock of Timer2 is Fsys/4;. If bT2\_CLK is 1, then bTMR\_CLK=0 or 1 choose Fsys/2 or Fsys as the clock.
- (3) Set RCAP2L and RCAP2H as the overload values after the timer overflow, set TR2 to 1, and turn on Timer2.


Figure 12.5.2.2 Timer2 UART0 baud rate generator



Timer2 signal channel capture mode:

- (1) Set the bit RCLK and TCLK in T2CON to 0, and select the non-serial baud rate generator mode.
- (2) Set the bit C\_T2 in the T2CON to 0 to choose to use the internal clock, turn to step (3), or choose the falling edge of the T2 pin as the counting clock, skip step (3).
- (3) Set T2MOD to choose the internal clock rate of Timer. If bT2\_CLK is 0, then the clock of Timer2 is Fsys/12;. If bT2\_CLK is 1, then bTMR\_CLK=0 or 1 choose Fsys/4 or Fsys as the clock.
- (4) Set the bits of T2MOD bT2\_CAP\_M1 and bT2\_CAP\_M0 to select the corresponding edge snap mode.
- (5) Set the bit CP\_RL2 of T2CON to 1, and select the capture function of Timer2 to the T2EX pin.
- (6) Set TL2 and TH2 as the initial values of the timer, set TR2 to 1, and turn on Timer2.
- (7) When CAP2 capture is complete, RCAP2L and RCAP2H will save the count values of TL2 and TH2 at that time and set EXF2 to generate an interrupt, and the difference between the next captured RCAP2L and RCAP2H and the previous captured RCAP2L and RCAP2H will be the width of the signal between the two active edges.
- (8) If the bit C\_T2 in the T2CON is 0 and the bit bT2\_CAP1\_EN in the T2MOD is 1, the capture of the T2 pin by Timer2 will be enabled at the same time. When the CAP1 capture is complete, T2CAP1L and T2CAP1H will save the count values of the TL2 and TH2 at that time, and set the CAP1F, causing an interruption.
- (9) If the bit bT2\_CAP0\_EN in T2CON2 is 1, then Timer2's capture of CAP0 pins will be enabled at the same time. When CAP0 capture is complete, T2CAP0L and T2CAP0H will save the count values of TL2 and TH2 at that time, and set bT2\_CAP0F, resulting in an interruption.





# 13. Universal Asynchronous Receiver Transmitter (UART)

# **13.1 UART Introduction**

The CH549 chip provides 4 full-duplex UART: UART0~UART3. CH548 provides only UART0 and UART1.

UART0 is a standard MCS51 serial port, and its data receiving and sending are realized through SBUF accessing physically separate receiving / sending registers. The data written to the SBUF is loaded into the transmit register, and the read operation to the SBUF corresponds to the receive buffer register.

UART1 is a simplified MCS51 serial port, and its data receiving and sending are realized through SBUF1 accessing physically separate receiving / sending registers. The data written to the SBUF1 is loaded into the transmit register, and the read operation to the SBUF1 corresponds to the receive buffer register. Compared with UART0, UART1 removes the multi-computer communication mode and fixed baud rate, and UART1 has an independent baud rate generator.

UART2 adds an interrupt enable bit to replace ADC interrupts on the basis of UART1.

UART3 and UART2, also on the basis of UART1, add an interrupt enable bit to replace PWMX interrupts.

| Name   | Address | Description                      | Reset value |
|--------|---------|----------------------------------|-------------|
| SBUF   | 99h     | UART0 data register              | xxh         |
| SCON   | 98h     | UART0 control register           | 00h         |
| SCON1  | BCh     | UART1 control register           | 40h         |
| SBUF1  | BDh     | UART1 data register              | xxh         |
| SBAUD1 | BEh     | UART1 baud rate setting register | xxh         |
| SIF1   | BFh     | UART1 interrupt status register  | 00h         |
| SCON2  | B4h     | UART2 control register           | 00h         |
| SBUF2  | B5h     | UART2 data register              | xxh         |
| SBAUD2 | B6h     | UART2 baud rate setting register | xxh         |
| SIF2   | B7h     | UART2 interrupt status register  | 00h         |
| SCON3  | ACh     | UART3 control register           | 00h         |
| SBUF3  | ADh     | UART3 data register              | xxh         |
| SBAUD3 | AEh     | UART3 baud rate setting register | xxh         |
| SIF3   | AFh     | UART3 interrupt status register  | 00h         |

## 13.2 UART Register

Table 13.2.1 List of UART registers

## 13.2.1 UART0 Register Description

UART0 Control Register (SCON):

| Bit | Name | Access | Description                                                         | Reset value |
|-----|------|--------|---------------------------------------------------------------------|-------------|
|     |      |        | UART0 mode bit0, data bit selection:                                |             |
| 7   | SM0  | RW     | 0: 8-bit data.                                                      | 0           |
|     |      |        | 1: 9-bit data.                                                      |             |
|     |      |        | UART0 mode bit1, baud rate selection:                               |             |
| 6   | SM1  | RW     | 0: Fixed.                                                           | 0           |
|     |      |        | 1: Variable, generated by T1 or T2.                                 |             |
| 5   | CM2  | DW     | UART0 Multi-machine communication control bit:                      | 0           |
|     | SM2  | RW     | When receiving data in modes 2 and 3, when SM2=1, if RB8 is 0, then | 0           |

|       |        | RI is not set to 1 and reception is invalid; if RB8 is 1, then RI is set to |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|--------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |        | I and reception is valid; when SM2=0, RI is set when receiving data         |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |        | and reception is valid, regardless of whether RB8 is 0 or 1;                |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |        | In mode 1, if SM2=1, then reception is only valid if a valid stop bit is    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |        | received;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |        | In mode 0, the SM2 bit must be set to 0.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |        | UART0 receive enable                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| REN   | RW     | 0: Disable.                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |        | 1: Enable.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |        | Bit 9 of the sent data, in modes 2 and 3, TB8 is used to write bit 9 of     |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TDO   | DW     | the sent data, which can be a parity bit; in multi-machine                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1 1 8 | IB8 KW | communication, it is used to indicate whether the host is sending an        | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |        | address byte or a data byte, TB8=0 for data, TB8=1 for address.             |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |        | Bit 9 of the received data, in modes 2 and 3, RB8 is used to store bit 9    |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| RB8   | RW     | of the received data; in mode 1, if SM2=0, then RB8 is used to store        | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |        | the received stop bit; in mode 0, RB8 is not used.                          |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TI    | DW     | Transmit interrupt flag bit, set by hardware after a data byte has been     | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11    | KW     | transmitted and needs to be cleared by software.                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DI    | DW     | Receive interrupt flag bit, set by hardware after a data byte is received,  | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
| KI    | KW     | needs to be cleared by software.                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | TB8    | TB8 RW<br>RB8 RW<br>TI RW                                                   | RENI and reception is valid; when SM2=0, RI is set when receiving data<br>and reception is valid, regardless of whether RB8 is 0 or 1;<br>In mode 1, if SM2=1, then reception is only valid if a valid stop bit is<br>received;<br>In mode 0, the SM2 bit must be set to 0.RENRWUART0 receive enable<br>0: Disable.<br>1: Enable.TB8RWBit 9 of the sent data, in modes 2 and 3, TB8 is used to write bit 9 of<br> |

#### Table 13.2.1.1 UART0 working mode

| SM0 | SM1 | Description                                                                             |
|-----|-----|-----------------------------------------------------------------------------------------|
| 0   | 0   | Mode 0, shift register method, baud rate fixed at Fsys/12                               |
| 0   | 1   | Mode 1, 8-bit asynchronous communication method, variable baud rate, generated by timer |
|     |     | T1 or T2                                                                                |
| 1   | 0   | Mode 2, 9-bit asynchronous communication method, baud rate is Fsys/128 (SMOD=0) or      |
|     |     | Fsys/32 (SMOD=1)                                                                        |
| 1   | 1   | Mode 3, 9-bit asynchronous communication method, variable baud rate, generated by timer |
|     |     | T1 or T2                                                                                |

In modes 1 and 3, when RCLK=0 and TCLK=0, the UART0 baud rate is generated by timer T1. T1 should be set to mode 2 automatic reload 8-bit timer mode, bT1\_CT and bT1\_GATE must both be 0, divided into the following types of clock cases.

| bTMR_CLK | bT1_CLK | SMOD | Description                            |
|----------|---------|------|----------------------------------------|
| 1        | 1       | 0    | TH1 = 256 - Fsys / 32 / baud rate      |
| 1        | 1       | 1    | TH1 = 256 - Fsys / 16 / baud rate      |
| 0        | 1       | 0    | TH1 = 256 - Fsys / 4 / 32 / baud rate  |
| 0        | 1       | 1    | TH1 = 256 - Fsys / 4 / 16 / baud rate  |
| X        | 0       | 0    | TH1 = 256 - Fsys / 12 / 32 / baud rate |
| X        | 0       | 1    | TH1 = 256 - Fsys / 12 / 16 / baud rate |

Table 13.2.1.2 Calculation formula of UART0 baud rate

In modes 1 and 3, when RCLK=1 or TCLK=1, the UART0 baud rate is generated by timer T2. T2 should be set to

16-bit automatic reload baud rate generator mode, C\_T2 and CP\_RL2 must both be 0, divided into the following types of clock cases.

| bTMR_CLK | bT2_CLK | Description                               |
|----------|---------|-------------------------------------------|
| 1        | 1       | RCAP2 = 65536 - Fsys / 16 / baud rate     |
| 0        | 1       | RCAP2 = 65536 - Fsys / 2 / 16 / baud rate |
| Х        | 0       | RCAP2 = 65536 - Fsys / 4 / 16 / baud rate |

Table 13.2.1.3 Calculation formula of UART0 baud rate

#### UART0 Data Register (SBUF):

| Bit   | Name | Access | Description                                                                                                                                                                                                                 | Reset value |
|-------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | SBUF | RW     | UART0 data registers, including sending and receiving two<br>physically separate registers. Transmit data registers<br>corresponding to write data to SBUF; receive data registers<br>corresponding to read data from SBUF. | xxh         |

### 13.2.2 UART1 Register Description

UART1 Control Register (SCON1):

| Bit | Name     | Access | Description                                                                          | Reset value |
|-----|----------|--------|--------------------------------------------------------------------------------------|-------------|
|     |          |        | UART1 working method selection                                                       |             |
| 7   | bU1SM0   | RW     | 0: 8-bit data.                                                                       | 0           |
|     |          |        | 1: 9-bit data.                                                                       |             |
| 6   | Reserved | RO     | Reserved                                                                             | 1           |
|     |          |        | UART1 baud rate selection:                                                           |             |
| 5   | bU1SMOD  | RW     | 0: Slow mode.                                                                        | 0           |
|     |          |        | 1: Fast mode.                                                                        |             |
|     |          |        | UART1 receive enable                                                                 |             |
| 4   | bU1REN   | RW     | 0: Disable.                                                                          | 0           |
|     |          |        | 1: Enable.                                                                           |             |
| 3   | bU1TB8   | RW     | The 9 <sup>th</sup> transmitted data bit, can be a parity bit in 9-bit data mode. In | 0           |
| 5   | 001100   | K W    | 8-bit data mode, TB8 is ignored.                                                     | 0           |
|     |          |        | The 9 <sup>th</sup> received data bit. In 9-bit data mode, RB8 is used to store the  |             |
| 2   | bU1RB8   | RW     | 9 <sup>th</sup> bit of the received data. In 8-bit data mode, RB8 is used to store   | 0           |
|     |          |        | the received stop bit.                                                               |             |
| 1   | bU1TIS   | WO     | Write 1, and the transmit interrupt flag bit will be preset to 1, and the            | 0           |
| 1   | 001115   | wu     | read value is always 0.                                                              | U           |
| 0   |          | WO     | Write 1, and the receive interrupt flag bit will be preset to 1, and the             | 0           |
|     | bU1RIS   | wu     | read value is always 0.                                                              | 0           |

The UART1 baud rate is generated by the SBAUD1 setting, which is divided into two cases according to the choice of bU1SMOD:

When bU1SMOD=0, SBAUD1 = 256 - Fsys / 32 / baud rate. When bU1SMOD=1, SBAUD1 = 256 - Fsys / 16 / baud rate.

| Bit   | Name     | Access | Description                                                                                                                                                  | Reset value |
|-------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:2] | Reserved | RO     | Reserved                                                                                                                                                     | 000000Ь     |
| 1     | bU1TI    | RW     | Transmit interrupt flag bit, set by hardware after a byte is<br>transmitted. Write 1 to reset by software (writing 0 to this bit<br>will be ignored)         | 0           |
| 0     | bU1RI    | RW     | Receive interrupt flag bit, set by hardware after a byte is<br>received effectively. Write 1 to reset by software (writing 0<br>to this bit will be ignored) | 0           |

#### UART1 Interrupt Status Register (SIF1):

Note: Writing 1 to the interrupt flag bit to zero ensures that only the specified flag bit is cleared and does not affect other interrupt flags under the same register (other interrupt flags may have been 1 before the write operation, or may become 1 during the write operation). Same as below.

### UART1 Data Register (SBUF1):

| Bit   | Name  | Access | Description                                                                                                                                                                                                                       | Reset value |
|-------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | SBUF1 | RW     | UART1 data registers, including transmitting and receiving<br>two physically separate registers. Transmit data registers<br>corresponding to write data to SBUF1; receive data registers<br>corresponding to read data from SBUF1 | xxh         |

# 13.2.3 UART2 Register Description

UART2 Control Register (SCON2):

| Bit | Name    | Access | Description                                                                      | Reset value |
|-----|---------|--------|----------------------------------------------------------------------------------|-------------|
|     |         |        | UART2 working mode selection                                                     |             |
| 7   | bU2SM0  | RW     | 0: 8-bit data.                                                                   | 0           |
|     |         |        | 1: 9-bit data.                                                                   |             |
|     |         |        | UART2 interrupt enable                                                           |             |
|     |         |        | 0: UART2 request interrupt disabled, and the interrupt flag can be               |             |
| 6   | bU2IE   | RW     | inquired.                                                                        | 0           |
|     |         |        | 1: UART2 interrupt enabled, and the original ADC interrupt is                    |             |
|     |         |        | disabled for replacement.                                                        |             |
|     |         |        | UART2 baud rate selection:                                                       |             |
| 5   | bU2SMOD | RW     | 0: Slow mode.                                                                    | 0           |
|     |         |        | 1: Fast mode.                                                                    |             |
|     |         |        | UART2 receive enable                                                             |             |
| 4   | bU2REN  | RW     | 0: Disable.                                                                      | 0           |
|     |         |        | 1: Enable.                                                                       |             |
|     |         |        | The 9 <sup>th</sup> transmitted data bit. In 9-bit data mode, TB8 is used to     |             |
| 3   | bU2TB8  | RW     | write the 9 <sup>th</sup> transmitted data bit, which can be a parity bit. In 8- | 0           |
|     |         |        | bit data mode, TB8 is ignored.                                                   |             |
|     |         |        | The 9 <sup>th</sup> received data bit. In 9-bit data mode, RB8 is used to store  |             |
| 2   | bU2RB8  | RW     | the 9th received data bit. In 8-bit data mode, RB8 is used to store              | 0           |
|     |         |        | the received stop bit.                                                           |             |
| 1   | bU2TIS  | WO     | Write 1, and the transmit interrupt flag bit will be preset to 1, and            | 0           |

|   |          |             | the read value is always 0.                                          |   |
|---|----------|-------------|----------------------------------------------------------------------|---|
| 0 | LUDDIC   | bU2RIS   WO | Write 1, and the receive interrupt flag bit will be preset to 1, and | 0 |
| 0 | 0 bU2RIS |             | the read value is always 0.                                          | 0 |

UART2 baud rate is generated by SBAUD2, and it can be divided into 2 cases according to bU2SMOD: When bU2SMOD=0, SBAUD2 = 256 - Fsys / 32 / baud rate. When bU2SMOD=1, SBAUD2 = 256 - Fsys / 16 / baud rate.

| Bit   | Name     | Access | Description                                                                                                                                                   | Reset value |
|-------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:2] | Reserved | RO     | Reserved                                                                                                                                                      | 000000b     |
| 1     | bU2TI    | RW     | Transmit interrupt flag bit, set by hardware after a byte is<br>transmitted. Write 1 to reset by software (writing 0 to this bit<br>will be ignored).         | 0           |
| 0     | bU2RI    | RW     | Receive interrupt flag bit, set by hardware after a byte is received<br>effectively. Write 1 to reset by software (writing 0 to this bit will<br>be ignored). | 0           |

### UART2 Interrupt Status Register (SIF2):

#### UART2 Data Register (SBUF2):

| Bit   | Name  | Access | Description                                                                                                                                                                                                                       | Reset value |
|-------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | SBUF2 | RW     | UART2 data registers, including transmitting and receiving<br>two physically separate registers. Transmit data registers<br>corresponding to write data to SBUF2; receive data registers<br>corresponding to read data from SBUF2 | xxh         |

# 13.2.4 UART3 Register Description

## UART3 Control Register (SCON3):

| Bit | Name    | Access | Description                                                                        | Reset value |
|-----|---------|--------|------------------------------------------------------------------------------------|-------------|
|     |         |        | UART3 working mode selection                                                       |             |
| 7   | bU3SM0  | RW     | 0: 8-bit data.                                                                     | 0           |
|     |         |        | 1: 9-bit data.                                                                     |             |
|     |         |        | UART3 interrupt enable                                                             |             |
|     |         |        | 0: UART3 request interrupt disabled, and the interrupt flag can be                 |             |
| 6   | bU3IE   | RW     | inquired.                                                                          | 0           |
|     |         |        | 1: UART3 interrupt enabled, and the original PWMX interrupt is                     |             |
|     |         |        | disabled for replacement.                                                          |             |
|     |         |        | UART3 baud rate selection                                                          |             |
| 5   | bU3SMOD | RW     | 0: Slow mode.                                                                      | 0           |
|     |         |        | 1: Fast mode.                                                                      |             |
|     |         |        | UART3 receive enable                                                               |             |
| 4   | bU3REN  | RW     | 0: Disable.                                                                        | 0           |
|     |         |        | 1: Enable.                                                                         |             |
| 3   | bU3TB8  | RW     | The 9 <sup>th</sup> transmitted data bit. In 9-bit data mode, TB8 is used to write | 0           |

|   |        |    | the 9 <sup>th</sup> transmitted data bit, which can be a parity bit. In 8-bit data mode, TB8 is ignored.                                                                               |   |
|---|--------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | bU3RB8 | RW | The 9 <sup>th</sup> received data bit. In 9-bit data mode, RB8 is used to store the 9 <sup>th</sup> received data bit. In 8-bit data mode, RB8 is used to store the received stop bit. | 0 |
| 1 | bU3TIS | WO | Write 1, the transmit interrupt flag bit will be preset to 1, and the read value is always 0.                                                                                          | 0 |
| 0 | bU3RIS | WO | Write 1, the receive interrupt flag bit will be preset to 1, and the read value is always 0.                                                                                           | 0 |

UART3 baud rate is generated by SBAUD3, and it can be divided into 2 cases according to bU3SMOD:

When bU3SMOD=0, SBAUD3 = 256 - Fsys / 32 / baud rate;

When bU3SMOD=1, SBAUD3 = 256 - Fsys / 16 / baud rate.

UART3 Interrupt Status Register (SIF3):

| Bit   | Name     | Access | Description                                                                                                                                                   | Reset value |
|-------|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:2] | Reserved | RO     | Reserved                                                                                                                                                      | 000000b     |
| 1     | bU3TI    | RW     | Transmit interrupt flag bit, set by hardware after a byte is<br>transmitted. Write 1 to reset by software (writing 0 to this bit<br>will be ignored).         | 0           |
| 0     | bU3RI    | RW     | Receive interrupt flag bit, set by hardware after a byte is<br>received effectively. Write 1 to reset by software (writing 0<br>to this bit will be ignored). | 0           |

## UART3 Data Register (SBUF3):

| Bit   | Name  | Access | Description                                                                                                                                                                                                      | Reset value |
|-------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | SBUF3 | RW     | UART3 data register, including physically separated transmit<br>register and receive register. The transmit register is used to<br>write data to SBUF3. The receive register is used to read data<br>from SBUF3. | xxh         |

# **13.3 UART Application**

UART0 application:

- (1). Select UART0 baud rate generator from T1 or T2, and set counter.
- (2). Enable T1 or T2.
- (3). Set SM0, SM1, SM2 in SCON to select UART0 working mode. Set REN to 1 and enable UART0 receiver.
- (4). Set UART interrupt or query R1 and T1 interrupt status.
- (5). Read/write SBUF to receive/transmit data, and the allowed receive baud rate error should be not more than 2%.

# UART1 application:

- (1). Select bU1SMOD and set SBAUD1 based on the baud rate.
- (2). Set bU1SM0 in SCON1 to select UART1 working mode. Set bU1REN to 1 and enable UART1 receiver.
- (3). Set UART1 interrupt or query bU1RI and bU1TI interrupt status (only write 1 to the specified bit to reset).
- (4). Read/write to SBUF1 to receive/transmit data, and the allowed baud rate error should be not more than 2%.

UART2 application (UART3 application):

- (1). Select bU2SMOD and set SBAUD2 based on the baud rate.
- (2). Set bU2SM0 in SCON2 to select UART2 working mode. Set bU2REN to 1 and enable UART2 receiver.
- (3). Query bU2RI and bU2TI interrupt status (write 1 to the specified bit to reset), or enable UART2 interrupt and set bU2IE to 1 to replace ADC (PWMX for UART3) interrupt.
- (4). Read/write to SBUF2 to receive/transmit data, and the allowed baud rate error should be not more than 2%.

# 14. Synchronous Serial Interface (SPI)

## **14.1 SPI Introduction**

CH549 chip provides SPI interface for high-speed synchronous data transmission with peripherals.

- (1). Support master mode and slave mode;
- (2). Support mode0 and mode3 clock mode;
- (3). Optional 3-wire full-duplex mode or 2-wire half-duplex mode;
- (4). Optional MSB first or LSB first;
- (5). Clock frequency is variable, up to half of the system clock frequency;
- (6). Built-in 1-byte receiver FIFO and 1-byte transmitter FIFO;
- (7). Support the first byte pre-load data in slave mode to facilitate the host to obtain the returned data immediately in the first byte.

Table 14.2.1 List of SPI registers

| Name       | Address | Description                          | Reset value |  |  |  |
|------------|---------|--------------------------------------|-------------|--|--|--|
| SPI0_SETUP | FCh     | SPI0 setting register                | 00h         |  |  |  |
| SPI0_S_PRE | FBh     | SPI0 slave mode preset data register | 20h         |  |  |  |
| SPI0_CK_SE | FBh     | SPI0 clock divisor setting register  | 20h         |  |  |  |
| SPI0_CTRL  | FAh     | SPI0 control register                | 02h         |  |  |  |
| SPI0_DATA  | F9h     | SPI0 data register                   | xxh         |  |  |  |
| SPI0_STAT  | F8h     | SPI0 status register                 | 08h         |  |  |  |

### 14.2 SPI Register

## SPI0 Setup Register (SPI0\_SETUP):

| Bit | Name           | Access | Description                                               | Reset value |
|-----|----------------|--------|-----------------------------------------------------------|-------------|
|     |                |        | SPI0 master/slave mode selection                          |             |
| 7   | bS0_MODE_SLV   | RW     | 0: Master mode;                                           | 0           |
|     |                |        | 1: Slave mode/device mode.                                |             |
|     |                |        | FIFO overflow interrupt enable in slave mode              |             |
| 6   | bS0_IE_FIFO_OV | RW     | 1: FIFO overflow interrupt is enabled;                    | 0           |
|     |                |        | 0: FIFO overflow will not result in interrupt.            |             |
|     |                |        | The first receive byte interrupt in slave mode enable:    |             |
| 5   | LCA IE EIDCT   | RW     | 1: The first receive byte will trigger interrupt in slave | 0           |
| 5   | bS0_IE_FIRST   | Γ.VV   | mode.                                                     | 0           |
|     |                |        | 0: The first receive byte will not trigger interrupt.     |             |
|     |                |        | Data byte transfer completion interrupt enable:           |             |
| 4   | LCA IE DVTE    | RW     | 1: Byte transfer completion interrupt is enabled.         | 0           |
| 4   | bS0_IE_BYTE    | KW     | 0: Byte transfer completion interrupt will not result in  | 0           |
|     |                |        | interrupt.                                                |             |
|     |                |        | Data byte bit order control:                              |             |
| 3   | bS0_BIT_ORDER  | RW     | 0: MSB in first.                                          | 0           |
|     |                |        | 1: LSB in first.                                          |             |
| 2   | Reserved       | RO     | Reserved                                                  | 0           |

| 1 | bS0_SLV_SELT    | R0 | CS activation status in slave mode:<br>0: Not selected at present.<br>1: Selected at present.               | 0 |
|---|-----------------|----|-------------------------------------------------------------------------------------------------------------|---|
| 0 | bS0_SLV_PRELOAD | R0 | Preload data state in slave mode<br>1: It is in preload state before data transmission while CS<br>is valid | 0 |

## SPI0 Clock Divisor Setting Register (SPI0\_CK\_SE):

| Bit   | Name       | Access | Description                               | Reset value |
|-------|------------|--------|-------------------------------------------|-------------|
| [7:0] | SPI0_CK_SE | RW     | SPI0 clock divisor setting in master mode | 20h         |

### SPI0 Slave Mode Preset Data Register (SPI0\_S\_PRE)

| ĺ | Bit   | Name       | Access | Description                                | Reset value |
|---|-------|------------|--------|--------------------------------------------|-------------|
|   | [7:0] | SPI0_S_PRE | RW     | Pre-load first transfer data in slave mode | 20h         |

# SPI0 Control Register (SPI0\_CTRL):

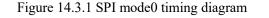
| Bit | Name         | Access | Description                                                   | Reset value |
|-----|--------------|--------|---------------------------------------------------------------|-------------|
|     |              |        | SPI0 MISO output enable:                                      |             |
| 7   | bS0_MISO_OE  | RW     | 1: Enable output.                                             | 0           |
|     |              |        | 0: Disable output.                                            |             |
|     |              |        | SPI0 MOSI output enable:                                      |             |
| 6   | bS0_MOSI_OE  | RW     | 1: Enable output.                                             | 0           |
|     |              |        | 0: Disable output.                                            |             |
|     |              |        | SPI0 SCK output enable:                                       |             |
| 5   | bS0_SCK_OE   | RW     | 1: Enable output.                                             | 0           |
|     |              |        | 0: Disable output.                                            |             |
|     |              |        | SPI0 data direction:                                          |             |
|     |              |        | 0: Output data, only regard FIFO writing as valid operation,  |             |
| 4   | bS0_DATA_DIR | RW     | start a SPI transmission.                                     | 0           |
|     |              |        | 1: Input data, reading or writing FIFO are all valid, start a |             |
|     |              |        | SPI transmission.                                             |             |
|     |              |        | SPI0 master clock mode:                                       |             |
| 3   | bS0_MST_CLK  | RW     | 0: Mode0, default low level when SCK is free.                 | 0           |
|     |              |        | 1: Mode3, SCK default high level.                             |             |
|     |              |        | SPI0 2-wire half-duplex mode enable:                          |             |
| 2   | bS0 2 WIRE   | RW     | 0: 3-wire full-duplex mode, including SCK, MOSI, and          | 0           |
| 2   | 030_2_WIKE   | IX VV  | MISO.                                                         | 0           |
|     |              |        | 1: 2-wire half-duplex mode, including SCK, MISO.              |             |
| 1   | bS0 CLR ALL  | RW     | 1: Clear SPI0 interrupt flag and FIFO.                        | 1           |
|     | USU_CLK_ALL  |        | Reset by software.                                            | 1           |
|     |              |        | Clear byte receiving completion interrupt flag automatically  |             |
| 0   | bS0_AUTO_IF  | RW     | by FIFO valid operation enable bit:                           | 0           |
|     |              |        | 1: It will clear byte receiving completion interrupt flag     |             |

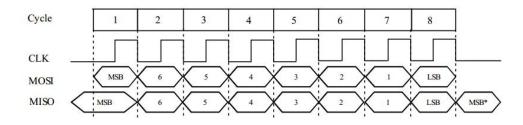
| S0_IF_BYTE automatically when there is valid FIFO |
|---------------------------------------------------|
| read/write operation.                             |

## SPI0 Data Register (SPI0\_DATA):

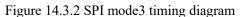
| Bit   | Name      | Access | Description                                                                                                                                                                                                                       | Reset value |
|-------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | SPI0_DATA | RW     | Including physically separated receive FIFO and transmit<br>FIFO. The receive FIFO is used for read operation. The<br>transmit FIFO is used for write operation. SPI transmission<br>can be started by valid read/write operation | xxh         |

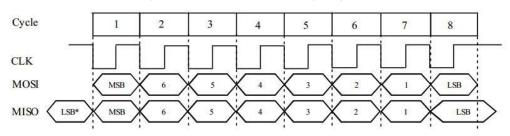
### SPI0 Status Register (SPI0\_STAT):


| Bit | Name        | Access | Description                                                      | Reset value |
|-----|-------------|--------|------------------------------------------------------------------|-------------|
| 7   | S0_FST_ACT  | R0     | 1: First byte has been received in slave mode                    | 0           |
|     |             |        | FIFO overflow flag in slave mode:<br>1: FIFO overflow interrupt. |             |
|     |             |        | 0: No interrupt                                                  |             |
| 6   | S0_IF_OV    | RW     | Directly write 0 to reset, or write 1 to the corresponding bit   | 0           |
|     |             |        | in the register to reset. Transmit FIFO empty triggers           |             |
|     |             |        | interrupt when bS0_DATA_DIR=0. Receive FIFO full                 |             |
|     |             |        | triggers interrupt when bS0_DATA_DIR=1.                          |             |
|     |             |        | The first byte received completion interrupt flag in slave       |             |
|     |             |        | mode:                                                            |             |
| 5   | S0_IF_FIRST | RW     | 1: The first byte has been received.                             | 0           |
|     |             |        | Directly write 0 to reset, or write 1 to the corresponding bit   |             |
|     |             |        | in the register to reset.                                        |             |
|     |             |        | Data byte transfer completion interrupt flag                     |             |
|     |             |        | 1: One byte has been transferred.                                |             |
| 4   | S0_IF_BYTE  | RW     | Directly write 0 to reset, or write 1 to the corresponding bit   | 0           |
|     |             |        | in the register to reset. Valid FIFO operation while             |             |
|     |             |        | bS0_AUTO_IF=1 can also reset it.                                 |             |
|     |             |        | SPI0 free flag                                                   |             |
| 3   | S0_FREE     | R0     | 1: No SPI shifting at present, usually in free period between    | 1           |
|     |             |        | data bytes.                                                      |             |
| 2   | S0_T_FIFO   | R0     | SPI0 transmit FIFO count, the valid value is 0 or 1              | 0           |
| 1   | Reserved    | R0     | Reserved                                                         | 0           |
| 0   | S0_R_FIFO   | R0     | SPI0 receive FIFO count, the valid value is 0 or 1               | 0           |


## 14.3 SPI Transfer Format

SPI host mode supports mode 0 and mode 3, which can be selected by setting the bit bSn\_MST\_CLK in the SPI control register SPIn\_CTRL. CH549 always samples MISO data at the rising edge of CLK. The data transmission format is shown in the following figure.


Mode0:  $bSn_MST_CLK = 0$ 


V1H





Mode3: bSn MST CLK = 1





#### **14.4 SPI Configuration**

#### 14.4.1 SPI Master Mode Configuration

In SPI host mode, the SCK pin outputs a serial clock, and the chip-selected output pin can be specified as any I/O pin.

SPI0 configuration steps:

- (1) Set the SPI clock frequency division setting register SPI0\_CK\_SE and configure the SPI clock frequency.
- (2) Set the bit bS0 MODE SLV of the SPI setting register SPI0 SETUP to 0 and configure it in host mode.
- (3) Set the bit bS0 MST CLK of the SPI control register SPI0 CTRL to mode 0 or 3 as needed.
- (4) Set the bit bS0\_SCK\_OE and bS0\_MOSI\_OE of SPI control register SPI0\_CTRL to 0, set P1 port direction bSCK and bMOSI as output, bMISO as input, and chip selection pin as output.

Data transmission process:

- (1) Write the SPI0\_DATA register, write the data to be transmitted to the FIFO, and automatically start a SPI transfer.
- (2) Waiting for the S0\_FREE to be 1 means that the sending is complete, and you can continue to send the next byte.

Data reception process:

- (1) Write the SPI0 DATA register and write any data such as 0FFh to the FIFO to initiate a SPI transfer.
- (2) Waiting for the S0\_FREE to be 1 means that the reception is complete, and the SPI0\_DATA can be read to get the received data.
- (3) If bS0\_DATA\_DIR is previously set to 1, the above read operation will also start the next SPI transfer, otherwise it will not start.

#### 14.4.2 SPI Slave Mode Configuration

Only SPI0 supports slave mode, where the SCK pin is used to receive the serial clock of the connected SPI host.

- (1) Set the bit bS0 MODE SLV of the SPI0 setting register SPI0 SETUP to 1 and configure it in slave mode.
- (2) Set the bits bS0 SCK OE and bS0 MOSI OE of SPI0 control register SPI0 CTRL to 0, set bS0 MISO OE

to 1, set P1 port direction bSCK, bMOSI and bMISO and chip selection pins as inputs. When the SCS chip is selected as valid (low level), the MISO will automatically enable the output. At the same time, it is recommended to set the MISO pin to the high resistance input mode (P1\_MOD\_OC [6] = 0, P1\_DIR\_PU [6] = 0), so that the MISO will not output during the invalid chip selection, so that it is convenient to share the SPI bus.

(3) Optionally, set the SPI slave mode preset data register SPI0\_S\_PRE, which is automatically loaded into the buffer for external output for the first time after being selected by the chip. After 8 serial clocks, that is, the first data byte is transferred and exchanged, the CH549 gets the first byte of data sent by the external SPI host (possibly a command code), and the external SPI host exchanges the preset data (possibly the status value) in the SPI0\_S\_PRE. The bit 7 of register SPI0\_S\_PRE will be automatically loaded on the MISO pin during the low level of SCK after the SPI chip selection is valid. for SPI mode 0, if CH549 presets bit 7 of SPI0\_S\_PRE, then the external SPI host will be able to get the preset value of bit 7 of SPI0\_S\_PRE by querying the MISO pin when the SPI chip selection is valid but has not yet transferred data. Thus the value of bit 7 of SPI0\_S\_PRE can be obtained by simply validating the SPI chip selection.

#### Data transmission process:

Query S0\_IF\_BYTE or wait for an interrupt. After each SPI data byte transfer is complete, write the SPI0\_DATA register and write the data to be sent to FIFO. Or wait for S0\_FREE to change from 0 to 1, and then continue to send the next byte.

#### Data reception process:

Query the S0\_IF\_BYTE or wait for the interrupt. After each SPI data byte transfer is complete, read the SPI0\_DATA register to get the received data from the FIFO. Query S0\_R\_FIFO to know if there are any remaining bytes in the FIFO.

# 15. Analog to Digital Converter (ADC) and Touch-key (TKEY)

# **15.1 Introduction to ADC and CMP**

CH549 chip provides 12-bit analog-to-digital converter, including ADC and CMP module.

The ADC has 16 external analog signal input channels and 4 internal input channels (reference voltage), which can be collected time-sharing and support the analog input voltage range from 0 to VDD.

The forward input of the CMP reuses the above ADC input, and the inverse input has two external analog signal input channels and two internal reference voltage input channels, which can be compared in time sharing. There are more than 68 kinds of cross combinations, and the analog input voltage range from 0 to VDD is supported.

## 15.2 ADC and CMP Register

| Name      | Address | Description                                    | Reset value |
|-----------|---------|------------------------------------------------|-------------|
| ADC_CTRL  | F2h     | ADC control and status register                | xxh         |
| ADC_CFG   | F3H     | ADC configuration register                     | 00h         |
| ADC_DAT_H | F5h     | ADC result data high byte (read only)          | 0xh         |
| ADC_DAT_L | F4h     | ADC result data low byte (read only)           | xxh         |
| ADC_DAT   | F4h     | 16-bit SFR consists of ADC_DAT_L and ADC_DAT_H | 0xxxh       |
| ADC_CHAN  | F6h     | ADC analog signal channel selection register   | 00h         |
| ADC_PIN   | F7h     | ADC pin digital input control register         | 00h         |

ADC Control and Status Register (ADC\_CTRL):

| Bit   | Name       | Access | Description                                                                                                                                                                                                | Reset value |
|-------|------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | bCMPDO     | RO     | CMP result output bit after synchronous delay, the status of bCMPO after synchronous delay with bCMP_IF                                                                                                    | x           |
| 6     | bCMP_IF    | RW     | CMP result change interrupt flag<br>1: CMP result has changed. Write 1 to reset.                                                                                                                           | 0           |
| 5     | bADC_IF    | RW     | ADC conversion completion interrupt flag<br>1: An ADC conversion is completed. Write 1 to reset<br>or write TKEY_CTRL to reset.                                                                            | 0           |
| 4     | bADC_START | RW     | ADC start control, set 1 to start an ADC conversion.<br>Reset automatically at the end of ADC conversion.                                                                                                  | 0           |
| 3     | bTKEY_ACT  | RO     | Touch-key detection activation state<br>1: Capacitor is being charged and the ADC is being<br>measured.                                                                                                    | 0           |
| [2:1] | Reserved   | R0     | Reserved                                                                                                                                                                                                   | 00b         |
| 0     | bCMPO      | RO     | <ul><li>CMP result real-time output</li><li>0: Voltage on positive input is lower than voltage on inverted input.</li><li>1: Voltage on positive input is higher than voltage on inverted input.</li></ul> | x           |

#### ADC Configuration Register (ADC\_CFG):

| Bit   | Name        | Access | Description                                            | Reset value       |  |                   |  |
|-------|-------------|--------|--------------------------------------------------------|-------------------|--|-------------------|--|
| [7:6] | Reserved    | R0     | Reserved                                               | 00b               |  |                   |  |
|       |             |        | CMP positive input and ADC input channel external      |                   |  |                   |  |
| 5     | bADC AIN EN | RW     | AIN enable                                             | 0                 |  |                   |  |
| 5     | UADC_AIN_EN | K VV   | 1: One of 16 AIN is selected by MASK_ADC_CHAN.         | 0                 |  |                   |  |
|       |             |        | 0: Disable external AIN.                               |                   |  |                   |  |
|       |             |        | Internal reference voltage enable                      |                   |  |                   |  |
| 4     | bVDD REF EN | RW     | 1: Internal reference voltage is generated by multiple | 0                 |  |                   |  |
| 7     | UVDD_REF_EN | IX VV  | series resistors to the supply voltage.                |                   |  |                   |  |
|       |             |        | 0: Disable divider resistance.                         |                   |  |                   |  |
|       |             |        |                                                        |                   |  | ADC power control |  |
| 3     | bADC_EN     | RW     | 0: ADC power off, and enter sleep state.               | 0                 |  |                   |  |
|       |             |        | 1: ADC power on.                                       |                   |  |                   |  |
|       |             |        |                                                        | CMP power control |  |                   |  |
|       |             |        | 0: CMP power off, and enter sleep state.               |                   |  |                   |  |
| 2     | bCMP EN     | RW     | 1: CMP power on. At the same time, the wake-up         | 0                 |  |                   |  |
| 2     |             | 1      | function of the voltage comparator is automatically    | Ū                 |  |                   |  |
|       |             |        | enabled, and if the comparator results in reverse      |                   |  |                   |  |
|       |             |        | changes during sleep, it will wake up automatically.   |                   |  |                   |  |
| 1     | bADC_CLK1   | RW     | ADC reference clock frequency selection high bit       | 0                 |  |                   |  |
| 0     | bADC_CLK0   | RW     | ADC reference clock frequency selection low bit        | 0                 |  |                   |  |

#### Table 15.2.2 ADC reference clock frequency selection

|           | ·,          |                 | ,                |                                      |
|-----------|-------------|-----------------|------------------|--------------------------------------|
| bADC CLK1 | bADC CLK0   | ADC reference   | Time required to | Applicable scope                     |
|           | on De_eliko | clock frequency | complete an ADC  | ripplicable scope                    |
| 0         | 0           | 750KHz          | 512 Fosc         | Rs<=16KΩ or Cs>=0.08uF               |
| 0         | 1           | 1.5MHz          | 256 Fosc         | $Rs \le 8K\Omega$ or $Cs \ge 0.08uF$ |
| 1         | 1           | 3MHz            | 128 Fosc         | VDD>=3V and                          |
| 1         | 0           |                 |                  | (Rs<=4KΩ or Cs>=0.08uF)              |
| 1         | 1           | (MIL-           | 64 Feee          | VDD>=4.5V and                        |
|           | 1           | 6MHz            | 64 Fosc          | (Rs<=2KΩ or Cs>=0.08uF)              |

Note: VDD refers to the power supply voltage, Cs refers to the parallel capacitance of the signal source, and Rs refers to the series internal resistance of the signal source (sampling time is only 3 reference clocks). The internal resistance of the internal reference voltage channel is large, so it is recommended to use a slower reference clock, or to abandon the previous data after multiple sampling.

| ADC Alla | ADC Analog Signal Challier Selection Register (ADC_CHAR). |        |                                                                                                   |             |  |  |
|----------|-----------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------|-------------|--|--|
| Bit      | Name                                                      | Access | Description                                                                                       | Reset value |  |  |
| [7:6]    | MASK_CMP_CHAN                                             | RW     | CMP inverted input signal channel selection                                                       | 00b         |  |  |
| [5:4]    | MASK_ADC_I_CH                                             | RW     | CMP positive input and ADC input internal signal channel selection                                | 00b         |  |  |
| [3:0]    | MASK_ADC_CHAN                                             | RW     | The CMP positive input and the ADC input external signal channel are selected when bADC_AIN_EN=1, | 0000b       |  |  |

ADC Analog Signal Channel Selection Register (ADC\_CHAN):

| and the external signal channel is closed when |  |
|------------------------------------------------|--|
| bADC_AIN_EN=0.                                 |  |

| bCMP_EN | bVDD_REF_EN | MASK_CMP_CHAN | CMP inverted input signal channel selection   |  |
|---------|-------------|---------------|-----------------------------------------------|--|
| 0       | Х           | xxb           | Disconnect signal channel, suspended          |  |
| 1       | 0           | 00b           | Disconnect signal channel, suspended          |  |
| 1       | 1           | 00b           | Connect to internal reference voltage: 12.5%  |  |
|         |             | 000           | of VDD voltage                                |  |
| 1       | 0           | 01b           | Connect to internal reference voltage: 100%   |  |
|         |             | 010           | of VDD voltage                                |  |
| 1       | 1           | 01b           | Connect to internal reference voltage: 25% of |  |
|         |             | 010           | VDD voltage                                   |  |
| 1       | Х           | 10b           | Connect to external signal AIN1 (P1.1)        |  |
| 1       | Х           | 11b           | Connect to external signal AIN2 (P1.2)        |  |

Table 15.2.3 CMP inverted input signal channel selection

Table 15.2.4 CMP positive input and ADC input internal signal channel selection

| bADC_E | bADC_AIN_ | bVDD_REF_ | MASK_ADC_I_ | CMP positive input and ADC input internal         |
|--------|-----------|-----------|-------------|---------------------------------------------------|
| Ν      | EN        | EN        | СН          | signal channel selection                          |
| x      | Х         | 0         | 00b         | Disconnect internal signal channel, suspended     |
| х      | Х         | 1         | 00Ь         | Connect to internal reference voltage: 50% of     |
|        |           |           | 000         | VDD voltage                                       |
| х      | Х         | Х         | 01b         | Connect to internal reference voltage: V33        |
|        |           |           | 010         | voltage                                           |
| х      | Х         | Х         | 10b         | Connect to internal voltage/with noise: 54.5% of  |
|        |           |           | 100         | V33 voltage                                       |
|        |           |           |             | Connect to internal signal: temperature sensor    |
| 1      | 0         | х         | 11b         | (TS),                                             |
|        |           |           |             | Please refer to the C example program for details |
| 0      | Х         | Х         | 11b         | Disconnect internal signal channel, suspended     |
| x      | 1         | Х         | 11b         | Disconnect internal signal channel, suspended     |

Table 15.2.5 CMP positive input and ADC input external signal channel selection

| bADC_AIN_EN | MASK_ADC_CHAN | CMP positive input and ADC input external signal channel selection |
|-------------|---------------|--------------------------------------------------------------------|
| 0           | xxxxb         | Disconnect the external signal channel (AIN0~AIN15), suspended     |
| 1           | 0000b         | Connect to external signal AIN0 (P1.0)                             |
| 1           | 0001b         | Connect to external signal AIN1 (P1.1)                             |
| 1           | 0010b         | Connect to external signal AIN2 (P1.2)                             |
| 1           | 0011b         | Connect to external signal AIN3 (P1.3)                             |
| 1           | 0100b         | Connect to external signal AIN4 (P1.4)                             |
| 1           | 0101b         | Connect to external signal AIN5 (P1.5)                             |

| 1 | 0110b | Connect to external signal AIN6 (P1.6)  |
|---|-------|-----------------------------------------|
| 1 | 0111b | Connect to external signal AIN7 (P1.7)  |
| 1 | 1000b | Connect to external signal AIN8 (P0.0)  |
| 1 | 1001b | Connect to external signal AIN9 (P0.1)  |
| 1 | 1010b | Connect to external signal AIN10 (P0.2) |
| 1 | 1011b | Connect to external signal AIN11 (P0.3) |
| 1 | 1100b | Connect to external signal AIN12 (P0.4) |
| 1 | 1101b | Connect to external signal AIN13 (P0.5) |
| 1 | 1110b | Connect to external signal AIN14 (P0.6) |
| 1 | 1111b | Connect to external signal AIN15 (P0.7) |

The voltage comparator CMP positive phase input and ADC input can only connect internal signals or external signals, and can also connect internal signals and external signals at the same time. When the internal and external signals are connected at the same time, the internal and external signals will communicate with each other, the turn-on resistance will be a series of 2 Rsw, and the internal reference voltage (with its internal resistance) will be connected to the external signal pin AIN0~AIN15 through the above 2 Rsw resistors, which is equivalent to providing a specific voltage pull-up resistance for the signal pin.

Ca is a sampling capacitor with a capacity of about 15pF. The resistance ratio of R2/R1 is 54.5 : 45.5. The 4R/2R/R resistance ratio is 4:2:1.

#### ADC Data Register (ADC\_DAT):

| ĺ | Bit   | Name      | Access | Description                           | Reset value |
|---|-------|-----------|--------|---------------------------------------|-------------|
| ľ | [7:0] | ADC_DAT_H | RO     | High byte of ADC sampling result data | 0xh         |
|   | [7:0] | ADC_DAT_L | RO     | Low byte of ADC sampling result data  | xxh         |

#### ADC Pin Digital Input Control Register (ADC\_PIN):

| Bit | Name               | Access         | Description                               | Reset value                             |    |                                     |   |
|-----|--------------------|----------------|-------------------------------------------|-----------------------------------------|----|-------------------------------------|---|
| 7   | 7 bain14 15 di dis | RW             | AIN14 and AIN15 digital input disable     | 0                                       |    |                                     |   |
| /   | DAIN14_13_DI_DIS   | ĸw             | 0: AIN14 and AIN15 digital input enabled. | 0                                       |    |                                     |   |
| 6   | LAINIA 12 DI DIC   | RW             | AIN12 and AIN13 digital input disable     | 0                                       |    |                                     |   |
| 6   | bAIN12_13_DI_DIS   | ĸw             | 0: AIN12 and AIN13 digital input enabled. | 0                                       |    |                                     |   |
| 5   | LAINIA 11 DI DIC   | RW             | AIN10 and AIN11 digital input disable     | 0                                       |    |                                     |   |
| 5   | bAIN10_11_DI_DIS   | ĸw             | 0: AIN10 and AIN11 digital input enabled. | 0                                       |    |                                     |   |
|     | bAIN8_9_DI_DIS     |                | DW                                        | AIN8 and AIN9 digital input disable     | 0  |                                     |   |
| 4   |                    | DIS RW         | 0: AIN8 and AIN9 digital input enabled.   | 0                                       |    |                                     |   |
| 2   |                    | DW             | AIN6 and AIN7 digital input disable       | 0                                       |    |                                     |   |
| 3   | bAIN6_7_DI_DIS     | 5_7_DI_DIS RW  | 0: AIN6 and AIN7 digital input enabled.   | 0                                       |    |                                     |   |
| 2   |                    |                |                                           |                                         | RW | AIN4 and AIN5 digital input disable | 0 |
| 2   | bAIN4_5_DI_DIS     | ĸw             | 0: AIN4 and AIN5 digital input enabled.   | 0                                       |    |                                     |   |
| 1   |                    | RW             | AIN2 and AIN3 digital input disable       | 0                                       |    |                                     |   |
|     | 1 bAIN2_3_DI_DIS R |                | 0: AIN2 and AIN3 digital input enabled.   | 0                                       |    |                                     |   |
| 0   | 0 bAIN0_1_DI_DIS   | DW             | AIN0 and AIN1 digital input disable       | 0                                       |    |                                     |   |
|     |                    | bAIN0_1_DI_DIS | RW                                        | 0: AIN0 and AIN1 digital input enabled. | 0  |                                     |   |

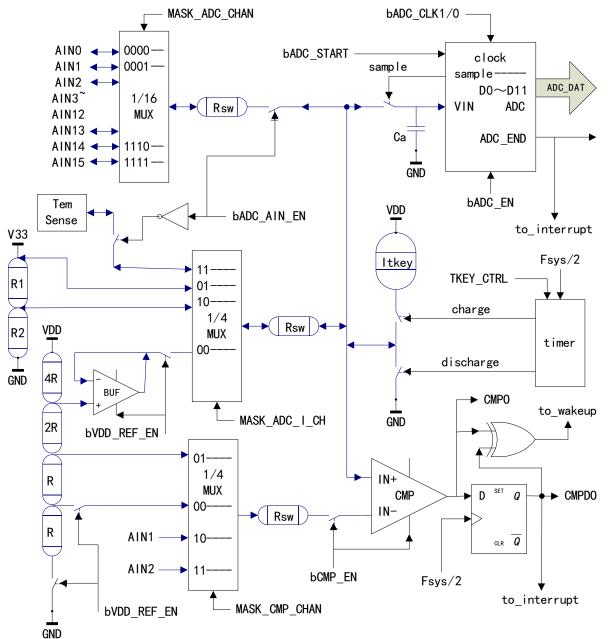



Figure 15.2.1 ADC/CMP/TKEY structure diagram (blue lines to represent analog signals)

## 15.3 TKEY Register

Table 15.3.1 List of TKEY registers

| Name      | Address | Description                                     | Reset value |
|-----------|---------|-------------------------------------------------|-------------|
| TKEY_CTRL | F1h     | Touch key charging pulse width control register | 00h         |

| Touchkey Charging Pulse | Width Control Register | (TKEY_CTRL): |
|-------------------------|------------------------|--------------|
|-------------------------|------------------------|--------------|

| Bit   | Name      | Access | Description                                                                                                                                                                                                           | Reset value |
|-------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | TKEY_CTRL | WO     | Touch key charging pulse width value, only the<br>lower 7 bits are valid, counted in 2 times the system<br>period (2/Fsys), the ADC is automatically activated<br>to measure the voltage on the capacitor when timed. | 00h         |

#### **15.4 ADC and Touch-Key Function**

ADC sampling mode configuration steps:

- (1) Set the bADC\_EN bit in the ADC\_CFG register to 1, open the ADC module, and set the bADC\_CLK0/1 selection frequency.
- (2) Set the MASK\_ADC\_CHAN or MASK\_ADC\_I\_CH in the ADC\_CHAN register and select the external or internal signal channel.
- (3) Optional, clear the interrupt flag bADC\_IF. Optionally, if you use interrupt mode, you also need to enable interrupts here.
- (4) Set the bADC\_START in the ADC\_CTRL register to start an ADC conversion.
- (5) Wait for bADC\_START to change to 0, or bADC\_IF is set to 1 (if it was previously cleared), indicating that the ADC conversion is over, and the result data can be read through ADC\_DAT. This data is the value of 4095 parts of the input voltage relative to the VDD power supply voltage. For example, the result data is 475, indicating that the input voltage is close to 475/4095 of the VDD voltage. If the VDD power supply voltage is uncertain, then another determined reference voltage value can be measured, and then the measured input voltage value and the VDD power supply voltage value can be calculated proportionally.
- (6) If you set bADC\_START again, you can start the next ADC conversion.
- (7) If the higher ADC reference clock frequency leads to shorter sampling time, or the signal source series internal resistance is larger, or the supply voltage is lower, the Rsw internal resistance is larger, then it is possible that the Ca cannot sample enough signal voltage, which affects the ADC result. The solution is to discard the first ADC data, start the second ADC immediately and use its ADC result data, which is equivalent to sampling twice.
- (8) When the precision is high, it is recommended to calibrate before use and use software to eliminate the inherent deviation.

CMP mode configuration steps:

- (1) Set the bCMP\_EN bit in the ADC\_CFG register to 1 and open the voltage comparator module.
- (2) Set the MASK\_ADC\_CHAN, MASK\_CMP\_CHAN and MASK\_ADC\_I\_CH in the ADC\_CHAN register, and select the positive input and inverse input signals respectively. You can choose a variety of combinations, such as AIN0~AIN15 and AIN1/AIN2 comparison, AIN0~AIN15 and internal reference voltage comparison, AIN1/AIN2 and internal reference voltage comparison and so on.
- (3) Optional, clear the interrupt flag bCMP\_IF. Optionally, if you use interrupt mode, you also need to enable interrupts here.
- (4) The status of the bCMPO bit can be queried at any time to get the results of the current comparator.
- (5) If bCMP\_IF changes to 1, the result of the comparator has changed.

Touch-Key detection steps:

- (1) Set the bADC\_EN bit in the ADC\_CFG register to 1, open the ADC module, and set the bADC\_CLK0/1 selection frequency.
- (2) Set the MASK\_ADC\_CHAN in the ADC\_CHAN register and select the touch button signal channel.
- (3) According to the actual capacitance of the touch button, the appropriate charging pulse width is selected and written into the TKEY\_CTRL register. The simple calculation formula is as follows (assuming the external capacitance of the touch button Ckey=25pF, assuming VDD=5V, assuming Fsys=12MHz, rough calculation): count=(Ckey+Cint)\*0.7VDD/ITKEY/(2/Fsys)=(25p+15p)\*0.35\*5\*12M/50u=17 TKEY\_CTRL=count > 127 ? 127 : count
- (4) Optionally, if you use interrupt mode, you also need to enable interrupts here.

- (5) When the touch button capacitor charging time is up, CH549 automatically sets bADC\_START to start ADC to measure the voltage on the capacitor.
- (6) Wait for bTKEY\_ACT to change to 0, or bADC\_IF is set to 1, indicating the end of charging and ADC conversion, and the result data can be read through ADC\_DAT. The software compares the value with the value when there is no key before, and determines whether the touch button is pressed or not according to the change of capacitance.
- (7) Go to step (2) as needed and select another touch button signal channel for detection.
- (8) If the actual capacitance of the touch button is greater than 40pF or the main frequency is one of 48MHz and 6MHz, then the internal automatic discharge time may be insufficient, and it may be necessary to discharge the above capacitance at a low level around the output 1uS of the GPIO.

The GPIO pin of the selected external analog signal channel must be set to high resistance input mode or open-drain output mode and in the state of output 1 (equivalent to high resistance input),  $Pn_DIR_pu[x] = 0$ , and turn off pull-up resistance and pull-down resistance.

# 16. USB Controller

## **16.1 USB Introduction**

CH549 has built-in USB controller and USB transceiver with the following features:

- (1) Support USB Host functions and USB Device functions
- (2) Support USB 2.0 full-speed 12Mbps or low-speed 1.5Mbps
- (3) Support USB control transfer, batch transfer, interrupt transmission, synchronous/real-time transmission
- (4) Support up to 64 bytes of packets, built-in FIFO, support interrupts and DMA.

The USB related registers of CH549 are divided into three parts, some of which are reused in host and device mode.

- (1) USB global register;
- (2) USB device controller register
- (3) USB host controller register

### 16.2 Global Register

Table 16.2.1 USB global registers (those marked in grey are controlled by bUC\_RESET\_SIE reset)

| Name       | Address | Description                                       | Reset value |
|------------|---------|---------------------------------------------------|-------------|
| USB_C_CTRL | 91h     | USB type-C configuration channel control register | 0000 0000b  |
| USB_INT_FG | D8h     | USB interrupt flag register                       | 0010 0000b  |
| USB_INT_ST | D9h     | USB interrupt status register (read-only)         | 00xx xxxxb  |
| USB_MIS_ST | DAh     | USB miscellaneous status Register (read-only)     | xx10 1000b  |
| USB_RX_LEN | DBh     | USB receive length register (read-only)           | 0xxx xxxxb  |
| USB_INT_EN | E1h     | USB interrupt enable register                     | 0000 0000b  |
| USB_CTRL   | E2h     | USB control register                              | 0000 0110b  |
| USB_DEV_AD | E3h     | USB device address register                       | 0000 0000b  |

USB Type-C Configuration Channel Control Register (USB C CTRL):

| Bit | Name         | Access | Description                                                  | Reset value |
|-----|--------------|--------|--------------------------------------------------------------|-------------|
|     |              |        | 1: Enable USB PD BMC protocol output mode for UCC1           |             |
| 7   | bUCC_PD_MOD  | RW     | and UCC2 pins;                                               | 0           |
|     |              |        | 0: Disable.                                                  |             |
|     |              |        | 1: Enable the internal 5.1K pull-down resistance of the      |             |
| 6   | bUCC2_PD_EN  | RW     | UCC2 pin;                                                    | 0           |
|     |              |        | 0: Disable.                                                  |             |
| 5   | bUCC2 PU1 EN | RW     | This bit is the internal pull-up resistance control high bit | 0           |
|     | DUCC2_IUI_EN |        | of the UCC2 pin.                                             | 0           |
| 4   | bUCC2 PU0 EN | RW     | This bit is the internal pull-up resistance control of the   | 0           |
|     |              |        | UCC2 pin to select the low bit                               | 0           |
|     |              |        | 1: Enable the internal 10K pull-down resistance of the       |             |
| 3   | bVBUS_PD_EN  | RW     | VBUS pin;                                                    | 0           |
|     |              |        | 0: Disable.                                                  |             |
|     |              |        | 1: Enable the internal 5.1K pull-down resistance of the      |             |
| 2   | bUCC1_PD_EN  | RW     | UCC1 pin;                                                    | 0           |
|     |              |        | 0: Disable.                                                  |             |

| 1 | bUCC1_PU1_EN | RW    | This bit is the internal pull-up resistance control high bit of the UCC1 pin. | 0 |
|---|--------------|-------|-------------------------------------------------------------------------------|---|
| 0 | bUCC1 PU0 EN | RW    | This bit is the internal pull-up resistance control of the                    | 0 |
| 0 | DUCCI_FUU_EN | IX VV | UCC1 pin to select the low bit                                                | 0 |

The pull-up resistor inside the UCCn pin is selected by bUCCn\_PU1\_EN and bUCCn\_PU0\_EN.

| bUCCn_PU1_EN | bUCCn_PU0_EN | Select the pull-up resistor inside the UCCn pin                     |
|--------------|--------------|---------------------------------------------------------------------|
| 0            | 0            | Internal pull-up resistors are prohibited                           |
| 0            | 1            | Enable internal 56K $\Omega$ pull-up resistor, which means that a   |
|              | 1            | default USB current is provided                                     |
| 1            | 0            | Enable internal 22K $\Omega$ pull-up resistor, indicating that 1.5A |
|              | 0            | current can be provided                                             |
| 1            | 1            | Enable internal 10K $\Omega$ pull-up resistor, indicating that 3A   |
|              |              | current can be provided                                             |

The above USB type-C pull-up resistors and pull-down resistors are independent of the port pull-up resistors controlled by the Pn\_DIR\_PU port direction control and pull-up enable registers. When a pin is used for USB type-C, the port pull-up resistor corresponding to the pin should be disabled, and it is recommended to enable the high-resistance input mode (to avoid the output of this pin to be either low or high) for this pin.

For detailed control and input detection of USBtype-C configuration channel, please refer to USBtype-C application instructions and routines; for USBPD power transmission control and CRC processing, please refer to USBPD subroutines, application instructions and routines. CH543 chip is recommended.

| Bit        | Name        | Access                       | Description                                                        | Reset value |
|------------|-------------|------------------------------|--------------------------------------------------------------------|-------------|
| 7 U_IS_NAK | IT IS NAV   | DO                           | 1: Receive NAK busy response during current USB transfer.          | 0           |
|            | RO          | 0: Receive non-NAK response. | 0                                                                  |             |
|            |             | RO                           | The current USB transfer DATA0/1 synchronization flag              |             |
| 6          | U TOG OK    |                              | matching status                                                    | 0           |
| 0          | 0_100_0K    | KO                           | 1: Indicates synchronization and valid data;                       | U           |
|            |             |                              | 0: Indicates lack of synchronization and potentially invalid data. |             |
|            |             |                              | The idle status bit of the USB protocol processor                  |             |
| 5          | U_SIE_FREE  | RO                           | 0: Busy, indicating an ongoing USB transfer;                       | 1           |
|            |             |                              | 1: USB idle.                                                       |             |
|            |             | V RW                         | USB FIFO overflow interrupt flag                                   |             |
|            |             |                              | 1: FIFO overflow interrupt.                                        |             |
| 4          | UIF_FIFO_OV |                              | 0: No interrupt.                                                   | 0           |
|            |             |                              | Directly write 0 to reset, or write 1 to the corresponding bit in  |             |
|            |             |                              | the register to reset.                                             |             |
|            | UIF_HST_SOF | F_HST_SOF RW                 | USB SOF timing interrupt flag                                      |             |
| 3          |             |                              | 1: SOF timing interrupt flag. The interrupt is triggered by the    |             |
|            |             |                              | completion of SOF packet transmission.                             | 0           |
|            |             |                              | 0: No interrupt.                                                   | Ū           |
|            |             |                              | Directly write 0 to reset, or write 1 to the corresponding bit in  |             |
|            |             |                              | the register to reset.                                             |             |
| 2          | UIF_SUSPEND | RW                           | USB bus suspend or wake-up event interrupt flag                    | 0           |

USB Interrupt Flag Register (USB\_INT\_FG):

| · |                  | (        |                                                                       |   |
|---|------------------|----------|-----------------------------------------------------------------------|---|
|   |                  |          | 1: There is an interrupt, triggered by USB suspend event or           |   |
|   |                  |          | wake-up event.                                                        |   |
|   |                  |          | 0: No interrupt.                                                      |   |
|   |                  |          | Directly write 0 to reset, or write 1 to the corresponding bit in     |   |
|   |                  |          | the register to reset.                                                |   |
|   |                  |          | USB transfer completion interrupt flag                                |   |
|   | LUE TO ANGEE     | RW       | 1: There is an interrupt, triggered by USB transfer completion.       |   |
| 1 | UIF_TRANSFE<br>R |          | 0: No interrupt.                                                      | 0 |
|   | K                |          | Directly write 0 to reset, or write 1 to the corresponding bit in     |   |
|   |                  |          | the register to reset.                                                |   |
|   | UIF_DETECT       | RW       | USB device connect or disconnect event interrupt flag                 |   |
|   |                  |          | 1: There is an interrupt, triggered by USB device connect or          |   |
| 0 |                  |          | disconnect.                                                           | 0 |
| 0 |                  |          | 0: No interrupt.                                                      | 0 |
|   |                  |          | Directly write 0 to reset, or write 1 to the corresponding bit in the |   |
|   |                  |          | register to reset.                                                    |   |
|   | UIF_BUS_RST      | S_RST RW | USB bus reset event interrupt flag                                    |   |
| 0 |                  |          | 1: There is an interrupt, triggered by USB bus reset event.           |   |
|   |                  |          | 0: No interrupt.                                                      | 0 |
|   |                  |          | Directly write 0 to reset, or write 1 to the corresponding bit in     |   |
|   |                  |          | the register to reset.                                                |   |

## USB Interrupt Status Register (USB\_INT\_ST):

| Bit   | Name           | Access | Description                                             | Reset value |
|-------|----------------|--------|---------------------------------------------------------|-------------|
| 7     | buis is nak    | RO     | 1: Receive NAK busy response during current USB         | 0           |
| ,     |                |        | transfer. The same as U_IS_NAK                          | 0           |
|       |                |        | Current USB transfer DATA0/1 synchronization flag match |             |
| 6     | buis tog ok    | RO     | state                                                   | 0           |
| 0     |                |        | 1: Synchronization.                                     | 0           |
|       |                |        | 0: Out of synchronization. The same as U_TOG_OK         |             |
| 5     | bUIS_TOKEN1    | RO     | Current USB transmission transaction token PID high bit | Х           |
| 4     | bUIS_TOKEN0    | R0     | Current USB transmission transaction token PID low bit  | Х           |
|       |                |        | Endpoint serial number of the current USB transfer      |             |
|       |                |        | transaction                                             |             |
| [3:0] | MASK_UIS_ENDP  | RO     | 0000: Endpoint 0.                                       | xxxxb       |
|       |                |        |                                                         |             |
|       |                |        | 1111: Endpoint 15.                                      |             |
|       |                |        | Response PID flag of current USB transfer               |             |
| [3:0] | MASK_UIS_H_RES | R0     | 0000: No response or overtime;                          | xxxxb       |
|       |                |        | Others: Response to PID.                                |             |

bUIS\_TOKEN1 and bUIS\_TOKEN0 make up MASK\_UIS\_TOKEN, the token PID used to identify the current USB transmission transaction in USB device mode: 00 for OUT packets; 01 for SOF packets; 10 for IN packets; 11 for SETUP packets.

### USB Miscellaneous Status Register (USB\_MIS\_ST):

| Bit | Name                | Access | Description                                                                                                                                                                                    | Reset value |
|-----|---------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | bUMS_SOF_P<br>RES   | RO     | In USB host mode, the SOF packet indicates a status bit.<br>1: Indicates that the SOF packet will be sent. If there are<br>other USB packets, it will be automatically delayed.                | Х           |
| 6   | bUMS_SOF_A<br>CT    | RO     | SOF packet transfer status in USB host mode<br>1: SOF package is transmitting out;<br>0: Transmit completed or idle.                                                                           | Х           |
| 5   | bUMS_SIE_FR<br>EE   | RO     | USB SIE free state<br>0: Busy, and USB transfer is in progress.<br>1: Free. The same as U_SIE_FREE                                                                                             | 1           |
| 4   | bUMS_R_FIF<br>O_RDY | RO     | USB receive FIFO data ready state<br>0: Receive FIFO is empty.<br>1: Receive FIFO is not empty.                                                                                                | 0           |
| 3   | bUMS_BUS_R<br>ESET  | RO     | USB bus reset status<br>0: No USB bus reset at present.<br>1: USB bus reset is in progress.                                                                                                    | 1           |
| 2   | bUMS_SUSPE<br>ND    | RO     | USB suspend status<br>0: There is USB activity at present.<br>1: No USB activity for some time, and request to be<br>suspended.                                                                | 0           |
| 1   | bUMS_DM_L<br>EVEL   | RO     | Record the status of the DM pin when the USB device is<br>just connected to the USB port in USB host mode<br>0: Low level;<br>1: High level. Used to judge whether full-speed or low-<br>speed | 0           |
| 0   | bUMS_DEV_A<br>TTACH | RO     | USB device connection status bit in USB host mode<br>1: The port is already connected to the USB device;<br>0: Not connected.                                                                  | 0           |

# USB Receiving Length Register (USB\_RX\_LEN):

| Bit   | Name        | Access | Description                                            | Reset value |
|-------|-------------|--------|--------------------------------------------------------|-------------|
| [7:0] | bUSB_RX_LEN | RO     | The number of bytes received by USB endpoint currently | xxh         |

# USB Interrupt Enable Register (USB\_INT\_EN):

| Bit | Name         | Access | Description                               | Reset value |
|-----|--------------|--------|-------------------------------------------|-------------|
| 7   | bUIE DEV SOF | RW     | 1: Enable receiving SOF packet interrupt. | 0           |
| /   |              | K W    | 0: Disable.                               | 0           |
| 6   | buie dev nak | RW     | 1: Enable receiving NAK interrupt.        | 0           |
| 6   | DUIE_DEV_NAK | K W    | 0: Disable.                               | 0           |
| 5   | Reserved     | RO     | Reserved                                  | 0           |
| 4   | bUIE FIFO OV | DW     | 1: Enable FIFO overflow interrupt.        | 0           |
| 4   |              | RW     | 0: Disable.                               | 0           |

| 3 | bUIE_HST_SOF | RW    | 1: Enable USB host mode SOF timing interrupt;         | 0 |
|---|--------------|-------|-------------------------------------------------------|---|
|   |              |       | 0: Disable.                                           |   |
| 2 | bUIE SUSPEND | RW    | 1: Enable USB bus suspend or wake-up event interrupt. | 0 |
|   | DOIE_SUSPEND | IX VV | 0: Disable.                                           | 0 |
|   | bUIE_TRANSFE | DIV   | 1: Enable USB transfer completion interrupt.          | 0 |
|   | R            | RW    | 0: Disable.                                           | 0 |
|   |              |       | 1: Enable USB device connect or disconnect event      |   |
| 0 | bUIE_DETECT  | RW    | interrupt in USB host mode;                           | 0 |
|   |              |       | 0: Disable.                                           |   |
|   | LUE DUE DET  | DW    | 1: Enable USB bus reset event interrupt.              | 0 |
| 0 | bUIE_BUS_RST | RW    | 0: Disable.                                           | 0 |

# USB Control Register (USB\_CTRL)

| Bit | Name              | Access | Description                                                                                                                                                                     | Reset value |
|-----|-------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | bUC_HOST_M<br>ODE | RW     | USB work mode selection<br>0: Select USB DEVICE mode;<br>1: Select USB HOST mode                                                                                                | 0           |
| 6   | bUC_LOW_SPE<br>ED | RW     | USB bus speed selection<br>0: Full-speed (12Mbps).<br>1: Low-speed (1.5Mbps).                                                                                                   | 0           |
| 5   | bUC_DEV_PU_<br>EN | RW     | USB device enable and internal pull-up resistor enable<br>1: Enable USB device transfer and enable internal pull-up<br>resistor.                                                | 0           |
| 5   | bUC_SYS_CTR<br>L1 | RW     | USB system control high bit                                                                                                                                                     | 0           |
| 4   | bUC_SYS_CTR<br>L0 | RW     | USB system control low bit                                                                                                                                                      | 0           |
| 3   | bUC_INT_BUS<br>Y  | RW     | Auto pause enable bit before USB transfer completion<br>interrupt flag is not reset<br>1: Auto pause and respond busy NAK before<br>UIF_TRANSFER is not reset.<br>0: Not pause. | 0           |
| 2   | bUC_RESET_SI<br>E | RW     | USB SIE software reset control<br>1: Force reset USB SIE and most of USB control registers.<br>Reset by software.                                                               | 1           |
| 1   | bUC_CLR_ALL       | RW     | 1: Clear USB interrupt flag and FIFO.<br>Reset by software.                                                                                                                     | 1           |
| 0   | bUC_DMA_EN        | RW     | <ol> <li>1: Enable USB DMA and DMA interrupt.</li> <li>0: Disable.</li> </ol>                                                                                                   | 0           |

#### USB system control consists of bUC\_SYS\_CTRL1 and bUC\_SYS\_CTRL0.

| bUC_HOST_MODE | bUC_SYS_CTRL1 | bUC_SYS_CTRL0 | USB system control description                    |
|---------------|---------------|---------------|---------------------------------------------------|
| 0             | 0             | 0             | Disable USB device function and turn off internal |

|   |   |   | pull-up resistor                                        |
|---|---|---|---------------------------------------------------------|
| 0 | 0 | 1 | Enable USB device function, turn off internal pull-     |
| 0 | 0 | I | up, add external pull-up                                |
|   |   |   | Enable USB device function, enable internal 1.5K        |
| 0 | 1 | х | $\Omega$ pull-up resistor. The pull-up resistance takes |
| 0 | 0 |   | precedence over the pull-down resistance and can        |
|   |   |   | also be used in GPIO mode.                              |
| 1 | 0 | 0 | Select USB host mode, normal working state              |
| 1 | 0 | 1 | Select USB host mode to force DP/DM to output           |
| 1 | 0 | 1 | SE0 status                                              |
| 1 | 1 | 0 | Select USB host mode to force DP/DM to output J         |
|   |   | 0 | status                                                  |
| 1 | 1 | 1 | Select USB host mode to force DP/DM to output K         |
|   | 1 | 1 | status / Wake up                                        |

#### USB Device Address Register (USB\_DEV\_AD):

| Bit   | Name              | Access | Description                                                                                                   | Reset value |
|-------|-------------------|--------|---------------------------------------------------------------------------------------------------------------|-------------|
| 7     | bUDA_GP_BIT       | RW     | USB general-purpose flag. User-defined. Can be reset and set by software.                                     | 0           |
| [6:0] | MASK_USB_AD<br>DR | RW     | The address of the currently operating USB device in host mode; the address of the USB device in device mode. | 00h         |

#### **16.3 Device Register**

In USB device mode, CH549 provides five sets of bi-directional endpoints 0, 1, 2, 3, 4, and the maximum big data packet length of all endpoints is 64 bytes.

Endpoint 0 is the default endpoint that supports controlling transmission, transmitting and receiving sharing a 64byte data buffer.

Endpoint 1, endpoint 2, and endpoint 3 each include a transmitting endpoint IN and a receiving endpoint OUT, each with an independent 64-byte or double 64-byte data buffer, which supports control transmission, batch transmission, interrupt transmission and real-time / synchronous transmission.

Endpoint 4 includes a transmitting endpoint IN and a receiving endpoint OUT, each with a separate 64-byte data buffer that supports control transmission, batch transmission, interrupt transmission and real-time / synchronous transmission.

Each set of endpoints has a control register UEPn\_CTRL and a transmit length register UEPn\_T\_LEN (n=0/1/2/3/4), which are used to set the synchronous trigger bit of the endpoint, the response to OUT and IN transactions, the length of data sent, and so on.

The USB bus pull-up resistance necessary for USB devices can be set by the software at any time. When the bUC\_DEV\_PU\_EN in the USB control register USB\_CTRL is set to 1, CH549 connects the pull-up resistors for the DP pin or DM pin of the USB bus internally according to the bUD\_LOW\_SPEED, and enables the USB device function.

When a USB bus reset, a USB bus hang or wake-up event is detected, or when the USB successfully processes data transmission or data reception, the USB protocol processor will set the corresponding interrupt flag and generate an interrupt request. The application program can query and analyze the interrupt flag register USB\_INT\_FG directly or in the USB interrupt service program, and process the interrupt flag register USB\_INT\_FG according to

endpoint number when the USB receives the interrupt.

UIF\_BUS\_RST and UIF\_SUSPEND; and, if the UIF\_TRANSFER is valid, it needs to continue to analyze the USB interrupt status register USB\_INT\_ST and process it according to the current endpoint number MASK\_UIS\_ENDP and the current transaction token PID identification MASK\_UIS\_TOKEN. If the synchronization trigger bit bUEP\_R\_TOG of the OUT transaction of each endpoint is set in advance, then whether the synchronization trigger bit of the currently received data packet matches the synchronization trigger bit of the endpoint can be determined by U\_TOG\_OK or bUIS\_TOG\_OK. If the data is synchronized, the data is valid; if the data is not synchronized, the data should be discarded. After each interrupt of USB transmission or reception, the synchronization trigger bit of the corresponding endpoint should be modified correctly to synchronize the data packet sent next time and detect whether the data packet received next time is synchronized; in addition, the corresponding synchronization trigger bit can be flipped automatically after successful transmission or reception by setting bUEP\_AUTO\_TOG. The data to be sent by each endpoint is in its own buffer, and the length of the data to be sent is independently set in the UEPn T\_LEN; the data received by each endpoint is in the respective buffer, but the length of the received

Name Address Description Reset value UDEV CTRL Dlh USB device physical port control register 00xx 0000b 0000 0000b UEP1 CTRL D2h Endpoint1 control register Endpoint1 transmit length register UEP1 T LEN D3h 0xxx xxxxb 0000 0000b UEP2 CTRL D4h Endpoint2 control register UEP2 T LEN D5h Endpoint2 transmit length register 0000 0000b UEP3 CTRL D6h Endpoint3 control register 0000 0000b UEP3 T LEN D7h Endpoint3 transmit length register 0xxx xxxxb UEP0 CTRL DCh Endpoint0 control register 0000 0000b UEP0 T LEN DDh Endpoint0 transmit length register 0xxx xxxxb UEP4 CTRL DEh Endpoint4 control register 0000 0000b UEP4 T LEN DFh Endpoint4 transmit length register 0xxx xxxxb 0000 0000b UEP4 1 MOD EAh Endpoint1/4 mode control register UEP2 3 MOD EBh Endpoint2/3 mode control register 0000 0000b UEP0 DMA H Endpoint0/4 buffer start address high byte 0000 0xxxb EDh UEP0 DMA L ECh Endpoint0/4 buffer start address low byte xxxx xxxxb UEP0 DMA ECh 16-bit SFR consists of UEP0 DMA L and UEP0 DMA H 0xxxh 0000 0xxxb UEP1 DMA H EFh Endpoint1 buffer start address high byte UEP1 DMA L EEh Endpoint1 buffer start address low byte xxxx xxxxb UEP1 DMA EEh 16-bit SFR consists of UEP1 DMA L and UEP1 DMA H 0xxxh UEP2\_DMA H Endpoint2 buffer start address high byte 0000 0xxxb E5h UEP2 DMA L Endpoint2 buffer start address low byte E4h xxxx xxxxb UEP2 DMA E4h 16-bit SFR consists of UEP2 DMA L and UEP2 DMA H 0xxxh UEP3 DMA H E7h Endpoint3 buffer start address high byte 0000 0xxxb UEP3 DMA L E6h Endpoint3 buffer start address low byte xxxx xxxxb UEP3 DMA E6h 16-bit SFR consists of UEP3 DMA L and UEP3 DMA H 0xxxh

Table 16.3.1 List of USB device registers (those marked in grey are controlled by RB UC RESET SIE reset)

data is in the USB receiving length register USB RX LEN, which can be distinguished according to the current

| USB Device Physical Port Control | Register (UDEV | CTRL), controlled by bUC | RESET SIE reset: |
|----------------------------------|----------------|--------------------------|------------------|
| 5                                | 0 (            |                          |                  |

| Bit | Name              | Access      | Description                                                 | Reset value |
|-----|-------------------|-------------|-------------------------------------------------------------|-------------|
|     |                   |             | USB UDP/UDM pin internal pull-down resistor disable         |             |
|     |                   |             | 1: Disable internal pull-down resistor.                     |             |
| 7   | bUD_PD_DIS        | RW          | 0: Enable internal pull-down resistor.                      | 0           |
|     |                   |             | This bit also can be used in GPIO mode to provide pull-down |             |
|     |                   |             | resistor.                                                   |             |
| 6   | Reserved          | RO          | Reserved                                                    | 0           |
|     |                   |             | Current UDP pin status                                      |             |
| 5   | bUD_DP_PIN        | RO          | 0: Low level.                                               | х           |
|     |                   |             | 1: High level.                                              |             |
|     |                   |             | Current UDM pin status                                      |             |
| 4   | bUD_DM_PIN        | RO          | 0: Low level.                                               | х           |
|     |                   |             | 1: High level.                                              |             |
| 3   | Reserved          | RO          | Reserved                                                    | 0           |
|     | LUD LOW SDE       |             | USB device physical port low-speed mode enable bit          |             |
| 2   | bUD_LOW_SPE<br>ED | RW          | 1: Low-speed (1.5Mbps) mode.                                | 0           |
|     | ED                |             | 0: Full-speed (12Mbps) mode.                                |             |
| 1   | LUD CD DIT        | DW          | USB device mode general-purpose flag                        |             |
| 1   | bUD_GP_BIT        | D_GP_BIT RW | User-defined. Can be reset and set by software.             | 0           |
|     |                   |             | USB device physical port enable                             |             |
| 0   | bUD_PORT_EN       | RW          | 1: Enable physical port.                                    | 0           |
|     |                   |             | 0: Disable physical port.                                   |             |

# Endpoint n Control Register (UEPn\_CTRL):

| Bit | Name              | Access | Description                                                                                                                                                                                                                | Reset value |
|-----|-------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7   | bUEP_R_TOG        | RW     | Expected data toggle flag of USB endpoint n receiver<br>(SETUP/OUT):<br>1: Expected DATA1.<br>0: Expected DATA0.                                                                                                           | 0           |
| 6   | bUEP_T_TOG        | RW     | <ul><li>Prepared data toggle flag of USB endpoint n transmitter (IN):</li><li>1: Transmit DATA1.</li><li>0: Transmit DATA0.</li></ul>                                                                                      | 0           |
| 5   | Reserved          | RO     | Reserved                                                                                                                                                                                                                   | 0           |
| 4   | bUEP_AUTO_T<br>OG | RW     | <ul> <li>Auto toggle enable</li> <li>1: Auto toggle.</li> <li>0: Manual toggle. Only supports single-receive or single-transmit mode of endpoint1/2/3, not supported when RX_EN and TX_EN of an endpoint are 1.</li> </ul> | 0           |
| 3   | bUEP_R_RES1       | RW     | High bit of handshake response type for USB endpoint n receiving (SETUP/OUT).                                                                                                                                              | 0           |
| 2   | bUEP_R_RES0       | RW     | Low bit of handshake response type for USB endpoint n receiving (SETUP/OUT).                                                                                                                                               | 0           |
| 1   | bUEP_T_RES1       | RW     | High bit of handshake response type for USB endpoint n                                                                                                                                                                     | 0           |

|   |             |      | transmittal (IN).                                     |   |
|---|-------------|------|-------------------------------------------------------|---|
| 0 | bUEP T RES0 | RW   | Low bit of handshake response type for USB endpoint n | 0 |
| 0 | DUEP_1_KESU | K VV | transmittal (IN).                                     | 0 |

The MASK\_UEP\_R\_RES, consisting of bUEP\_R\_RES1 and bUEP\_R\_RES0, is used to control how the receiver of endpoint n responds to SETUP/OUT transactions: 00 indicates reply ACK or ready; 01 indicates timeout / no response and is used to implement real-time / synchronous transmission of non-endpoint 0; 10 indicates reply NAK or busy; 11 indicates reply STALL or error.

The MASK\_UEP\_T\_RES consisting of bUEP\_T\_RES1 and bUEP\_T\_RES0 is used to control how the sender of endpoint n responds to IN transactions: 00 indicates reply DATA0/DATA1 or data ready and expects ACK;01 to indicate reply DATA0/DATA1 and expect no response, which is used to achieve real-time / synchronous transmission of non-endpoint 0; 10 indicates reply NAK or busy; 11 indicates reply STALL or error.

Endpoint n Transmit Length Register (UEPn\_T\_LEN):

| Bit               | Name        | Access | Description                                                                              | Reset value |
|-------------------|-------------|--------|------------------------------------------------------------------------------------------|-------------|
| [7:0]             | bUEPn_T_LEN |        | Set the number of data bytes that USB endpoint n is ready to transmit ( $n = 0/1/3/4$ ). | xxh         |
| [7:0] bUEP2_T_LEN | bUEP2_T_LEN | RW     | Set the number of data bytes that USB endpoint 2 is ready to transmit                    | 00h         |

### USB Endpoint1/4 Mode Control Register (UEP4\_1\_MOD):

| Bit   | Name          | Access | Description                         | Reset value |
|-------|---------------|--------|-------------------------------------|-------------|
|       |               |        | USB endpoint1 receive (OUT) enable: |             |
| 7     | bUEP1_RX_EN   | RW     | 1: Enable.                          | 0           |
|       |               |        | 0: Disable.                         |             |
|       |               |        | USB endpoint1 transmit (IN) enable: |             |
| 6     | bUEP1_TX_EN   | RW     | 1: Enable.                          | 0           |
|       |               |        | 0: Disable.                         |             |
| 5     | Reserved      | RO     | Reserved                            | 0           |
| 4     | bUEP1_BUF_MOD | RW     | Endpoint1 data buffer mode control  | 0           |
|       |               |        | USB endpoint4 receive (OUT) enable: |             |
| 3     | bUEP4_RX_EN   | R0     | 1: Enable.                          | 0           |
|       |               |        | 0: Disable.                         |             |
|       |               |        | USB endpoint4 transmit (IN) enable: |             |
| 2     | bUEP4_TX_EN   | RW     | 1: Enable.                          | 0           |
|       |               |        | 0: Disable.                         |             |
| [1:0] | Reserved      | RO     | Reserved                            | 00b         |

The data buffer mode of USB endpoints 0 and 4 is controlled by a combination of bUEP4\_RX\_EN and bUEP4\_TX\_EN, as shown in the following table.

| bUEP4_RX_EN | bUEP4_TX_EN | Structure description: arrange from low to high with UEP0_DMA as the starting address |
|-------------|-------------|---------------------------------------------------------------------------------------|
| 0           | 0           | Endpoint 0 single 64 byte transceiver common buffer (IN and OUT)                      |
| 1           | 0           | Endpoint 0 single 64 byte transceiver common buffer; endpoint 4 single 64             |

Table 16.3.2 Buffer mode of endpoint0 and endpoint4

|   |   | byte receive buffer (OUT)                                                  |
|---|---|----------------------------------------------------------------------------|
| 0 | 1 | Endpoint 0 single 64 byte send and receive common buffer; endpoint 4       |
| 0 | 1 | single 64 byte send buffer (IN)                                            |
|   |   | Endpoint 0 single 64 byte send and receive common buffer; Endpoint 4       |
|   | 1 | single 64 byte receive buffer (OUT); Endpoint 4 single 64 byte send buffer |
| 1 |   | (IN). All 192 bytes are arranged as follows:                               |
| 1 |   | UEP0_DMA+0 address: shared by end point 0 transceiver                      |
|   |   | UEP0_DMA+64 address: received by endpoint 4                                |
|   |   | UEP0_DMA+128 address: transmitted by endpoint 4                            |

#### USB Endpoint2/3 Mode Control Register (UEP2\_3\_MOD):

| Bit | Name          | Access | Description                         | Reset value |
|-----|---------------|--------|-------------------------------------|-------------|
|     |               |        | USB endpoint3 receive (OUT) enable: |             |
| 7   | bUEP3_RX_EN   | RW     | 1: Enable.                          | 0           |
|     |               |        | 0: Disable.                         |             |
|     |               |        | USB endpoint3 transmit (IN) enable: |             |
| 6   | bUEP3_TX_EN   | RW     | 1: Enable.                          | 0           |
|     |               |        | 0: Disable.                         |             |
| 5   | Reserved      | RO     | Reserved                            | 0           |
| 4   | bUEP3_BUF_MOD | RW     | Endpoint3 buffer mode control       | 0           |
|     |               |        | USB endpoint2 receive (OUT) enable: |             |
| 3   | bUEP2_RX_EN   | R0     | 1: Enable.                          | 0           |
|     |               |        | 0: Disable.                         |             |
|     |               |        | USB endpoint2 transmit (IN) enable: |             |
| 2   | bUEP2_TX_EN   | RW     | 1: Enable.                          | 0           |
|     |               |        | 0: Disable.                         |             |
| 1   | Reserved      | RO     | Reserved                            | 0           |
| 0   | bUEP2_BUF_MOD | RW     | Endpoint2 buffer mode control       | 0           |

The data buffer modes of USB endpoints 1, 2, and 3 are controlled by the combination of bUEPn\_RX\_EN and bUEPn\_TX\_EN and bUEPn\_BUF\_MOD (nasty 1, 2, 3), respectively, as shown in the table below. In the double 64-byte buffer mode, the first 64-byte buffer is selected according to bUEP\_\*\_TOG=0 when USB data is transmitted, and the latter 64-byte buffer is selected according to bUEP\_\*\_TOG=1 to realize automatic switching.

Table 16.3.3 Buffer mode of endpoint n (n=1/2/3)

| bUEPn_RX_EN                               | bUEPn_TX_EN | bUEPn_BUF_MOD | Structure description: arrange from low to high with<br>UEPn_DMA as the starting address |  |  |  |
|-------------------------------------------|-------------|---------------|------------------------------------------------------------------------------------------|--|--|--|
| 0 0 x Disable endpoint, and disable UEPn_ |             |               |                                                                                          |  |  |  |
| 1                                         | 0           | 0             | Single 64-byte receiving buffer (OUT)                                                    |  |  |  |
| 1                                         | 0           | 1             | Double 64-byte receiving buffer, selected by                                             |  |  |  |
| 1                                         |             |               | bUEP_R_TOG.                                                                              |  |  |  |
| 0                                         | 1           | 0             | Single 64-byte transmitting buffer (IN)                                                  |  |  |  |
| 0                                         | 1           | 1             | Double 64-byte transmitting buffer, selected by                                          |  |  |  |
| 0                                         | 1           | 1             | bUEP_T_TOG.                                                                              |  |  |  |
| 1                                         | 1           | 0             | Single 64-byte receiving buffer; Single 64-byte                                          |  |  |  |

|   |   |   | transmitting buffer                             |
|---|---|---|-------------------------------------------------|
|   |   |   | Double 64-byte receiving buffer, selected by    |
|   |   |   | bUEP_R_TOG;                                     |
|   |   |   | Double 64-byte transmitting buffer, selected by |
|   |   |   | bUEP_T_TOG.                                     |
|   |   |   | All 256-byte as follow:                         |
|   |   |   | UEPn_DMA+0 address: endpoint receiving when     |
| 1 | 1 | 1 | bUEP_R_TOG=0;                                   |
|   |   |   | UEPn_DMA+64 address: endpoint receiving when    |
|   |   |   | bUEP_R_TOG=1;                                   |
|   |   |   | UEPn_DMA+128 address: endpoint transmitting     |
|   |   |   | when bUEP_T_TOG=0;                              |
|   |   |   | UEPn_DMA+192 address: endpoint transmitting     |
|   |   |   | when bUEP_T_TOG=1                               |

USB Endpoint n Buffer Start Address (UEPn DMA) (n=0/1/2/3):

| Bit   | Name       | Access | Description                                                                                                   | Reset value |
|-------|------------|--------|---------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | UEPn_DMA_H | RW     | Endpoint n buffer start address high byte, only the low 3 bits are valid, and the high 5 bits are fixed to 0. | 0xh         |
| [7:0] | UEPn_DMA_L | RW     | Endpoint n buffer start address low byte                                                                      | xxh         |

*Note:* Length of buffer to receive data > = min (length of most big data packet that may be received + 2 bytes, 64 bytes)

#### 16.4 Host Register

In USB host mode, CH549 provides a set of bi-directional host endpoints, including a transmitting endpoint OUT and a receiving endpoint IN. The maximum length of the packet is 64 bytes, supporting control transmission, batch transmission, interrupt transmission and real-time/synchronous transmission.

Each USB transaction initiated by the host endpoint automatically sets the interrupt flag UIF\_TRANSFER at the end of the processing. The application program can directly query, or query and analyze the interrupt flag register USB\_INT\_FG in the USB interrupt service program, and carry out corresponding processing according to each interrupt flag. Moreover, if the UIF\_TRANSFER is valid, then it is necessary to continue to analyze the USB interrupt status register USB\_INT\_ST and carry out corresponding processing according to the reply PID identification MASK\_UIS\_H\_RES of the current USB transmission transaction.

If the synchronization trigger bit bUH\_R\_TOG of the IN transaction of the host receiving endpoint is set in advance, then whether the synchronization trigger bit of the currently received data packet matches the synchronization trigger bit of the host receiving endpoint can be judged by U\_TOG\_OK or bUIS\_TOG\_OK. If the data is synchronized, the data is valid; if the data is not synchronized, the data should be discarded. After each interrupt of USB transmission or reception, the synchronization trigger bit of the corresponding host endpoint should be modified correctly to synchronize the data packet transmitted next time and detect whether the data packet received next time is synchronized; in addition, the corresponding synchronization trigger bit can be flipped automatically after successful transmission or reception by setting bUEP AUTO TOG.

The USB host token setting register UH\_EP\_PID is the multiplexing of the USB endpoint 2 control register in the USB device mode, which is used to set the terminal number of the target device to be operated and the token PID packet identification of the USB transmission transaction. The data corresponding to the SETUP token and the OUT

token are provided by the host transmitting endpoint, the data to be transmitted is in the UH\_TX\_DMA buffer zone, and the length of the data to be transmitted is set in the UH\_TX\_LEN; the data corresponding to the IN token is returned by the target device to the host receiving endpoint, the received data is stored in the UH\_RX\_DMA buffer zone, and the received data length is stored in the USB\_RX\_LEN.

| Name        | Address | Description                                        | Reset value |
|-------------|---------|----------------------------------------------------|-------------|
| UHOST_CTRL  | D1h     | USB host physical port control register            | 00xx 0000b  |
| UH_SETUP    | D2h     | USB host auxiliary setting register                | 0000 0000b  |
| UH_RX_CTRL  | D4h     | USB host receive endpoint control register         | 0000 0000Ь  |
| UH_EP_PID   | D5h     | USB host token setting register                    | 0000 0000b  |
| UH_TX_CTRL  | D6h     | USB host transmit endpoint control register        | 0000 0000b  |
| UH_TX_LEN   | D7h     | USB host transmit length register                  | 0xxx xxxxb  |
| UH_EP_MOD   | EBh     | USB host endpoint mode control register            | 0000 0000b  |
| UH_RX_DMA_H | E5h     | USB host receive buffer start address high byte    | 0000 0xxxb  |
| UH_RX_DMA_L | E4h     | USB host receive buffer start address low byte     | xxxx xxxxb  |
| UH_RX_DMA   | E4h     | 16-bit SFR consists of UH_RX_DMA_L and UH_RX_DMA_H | 0xxxh       |
| UH_TX_DMA_H | E7h     | USB host transmit buffer start address high byte   | 0000 0xxxb  |
| UH_TX_DMA_L | E6h     | USB host transmit buffer start address low byte    | xxxx xxxxb  |
| UH_TX_DMA   | E6h     | 16-bit SFR consists of UH_TX_DMA_L and UH_TX_DMA_H | 0xxxh       |

Table 16.4.1 List of USB host registers (those marked in grey are controlled by bUC\_RESET\_SIE reset)

| USB Host Physical Port Cont | rol Register (UHOST | CTRL), controlled by bl | JC RESET SIE reset: |
|-----------------------------|---------------------|-------------------------|---------------------|
|                             |                     |                         |                     |

| Bit | Name              | Access | Description                                                 | Reset value |
|-----|-------------------|--------|-------------------------------------------------------------|-------------|
|     |                   |        | USB host endpoint UDP/UDM pin internal pull-down disable    |             |
|     |                   |        | 1: Disable;                                                 |             |
| 7   | bUH_PD_DIS        | RW     | 0: Enable.                                                  | 0           |
|     |                   |        | This bit can also be used in GPIO mode to provide pull-down |             |
|     |                   |        | resistors                                                   |             |
| 6   | Reserved          | RO     | Reserved                                                    | 0           |
|     |                   |        | Current UDP pin status                                      |             |
| 5   | bUH_DP_PIN        | RO     | 0: Low level.                                               | х           |
|     |                   |        | 1: High level.                                              |             |
|     |                   |        | Current UDM pin status                                      |             |
| 4   | bUH_DM_PIN        | RO     | 0: Low level.                                               | х           |
|     |                   |        | 1: High level.                                              |             |
| 3   | Reserved          | RO     | Reserved                                                    | 0           |
|     | LULLOW SDE        |        | USB host physical port low-speed mode enable bit            |             |
| 2   | bUH_LOW_SPE<br>ED | RW     | 1: Low-speed (1.5Mbps) mode.                                | 0           |
|     | ED                |        | 0: Full-speed (12Mbps) mode.                                |             |
|     | LULI DUG DES      |        | USB host port bus reset control bit                         |             |
| 1   | bUH_BUS_RES       | RW     | 1: Force host port output USB bus reset;                    | 0           |
|     | ET                |        | 0: 0 end output.                                            |             |

| ( | 0 | bUH_PORT_EN | RW | USB host port enable<br>1: Enable host port;<br>0: Disable host port.<br>This bit is cleared automatically when the USB device is | 0 |
|---|---|-------------|----|-----------------------------------------------------------------------------------------------------------------------------------|---|
|   |   |             |    | disconnected                                                                                                                      |   |

# USB Host Auxiliary Setting Register (UH\_SETUP):

| Bit   | Name               | Access | Description                                                                                                                                                                                                                                                                                     | Reset value |
|-------|--------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | bUH_PRE_PID_<br>EN | RW     | <ul> <li>Low-speed preamble PRE PID enable</li> <li>1: Enable USB host to communicate with low-speed</li> <li>USB devices through external HUB;</li> <li>0: Disable the low-speed preamble. There can be no</li> <li>HUB between the USB host and the low-speed USB</li> <li>device.</li> </ul> | 0           |
| 6     | bUH_SOF_EN         | RW     | <ul><li>Auto generate SOF packet enable</li><li>1: SOF package is generated automatically by USB host.</li><li>0: It is not generated automatically, but it can be generated manually.</li></ul>                                                                                                | 0           |
| [5:0] | Reserved           | RO     | Reserved                                                                                                                                                                                                                                                                                        | 00h         |

#### USB Host Receive Endpoint Control Register (UH\_RX\_CTRL):

| Bit   | Name               | Access | Description                                                                                                                                                                                                                                    | Reset value |
|-------|--------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | bUH_R_TOG          | RW     | Synchronization triggers expected by the USB host<br>receiver (processing IN transactions)<br>0: Expected DATA0;<br>1: Expected DATA1.                                                                                                         | 0           |
| [6:5] | Reserved           | RO     | Reserved                                                                                                                                                                                                                                       | 00b         |
| 4     | bUH_R_AUTO_<br>TOG | RW     | <ul> <li>Auto flip the bUH_R_TOG enable control bit</li> <li>1: bUH_R_TOG flag is automatically flipped after the USB host has successfully received it.</li> <li>0: It does not flip automatically, but you can switch 0 manually.</li> </ul> | 0           |
| 3     | Reserved           | RO     | Reserved                                                                                                                                                                                                                                       | 0           |
| 2     | bUH_R_RES          | RW     | Response control bits of the USB host receiver to IN<br>transactions<br>1: ACK or be ready;<br>0: No response, for real-time / synchronous transmission<br>with non-endpoint 0 of the target device.                                           | 0           |
| [1:0] | Reserved           | RO     | Reserved                                                                                                                                                                                                                                       | 00b         |

### USB Host Token Setting Register (UH\_EP\_PID):

| Bit   | Name         | Access | Description                                     | Reset value |
|-------|--------------|--------|-------------------------------------------------|-------------|
| [7:4] | MASK_UH_TOKE | RW     | Set the token PID package identity for this USB | 0000b       |

|       | N             |     | transport transaction                              |       |
|-------|---------------|-----|----------------------------------------------------|-------|
| [3:0] | MASK UH ENDP  | RW  | Set the endpoint number of the target device to be | 0000b |
| [3.0] | MASK_OII_ENDF | K W | operated this time                                 | 00000 |

USB Host Transmit Endpoint Control Register (UH\_TX\_CTRL):

| Bit   | Name               | Access | Description                                                                                                                                                                                                                                               | Reset value |
|-------|--------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | Reserved           | RO     | Reserved                                                                                                                                                                                                                                                  | 0           |
|       | bUH T TOG          | RW     | Synchronous trigger bits prepared by the USB host sender (processing SETUP/OUT transactions)                                                                                                                                                              | 0           |
| 6     | b0H_1_10G          | KW     | 0: Transmit DATA0;<br>1: Transmit DATA1.                                                                                                                                                                                                                  | 0           |
| 5     | Reserved           | RO     | Reserved                                                                                                                                                                                                                                                  | 0           |
| 4     | bUH_T_AUTO<br>_TOG | RW     | <ul> <li>Auto flip the bUH_T_TOG enable control bit</li> <li>1: Auto flip the bUH_T_TOG flag after the USB host has successfully transmitted it;</li> <li>0: Does not flip automatically, but can be switched manually</li> </ul>                         | 0           |
| [3:1] | Reserved           | RO     | Reserved                                                                                                                                                                                                                                                  | 000b        |
| 0     | bUH_T_RES          | RW     | <ul> <li>Response Control bit of USB Host transmitter to SETUP/OUT transaction</li> <li>0: Expect to answer ACK or ready;</li> <li>1: Expected no response, for real-time / synchronous transmission with non-endpoint 0 of the target device.</li> </ul> | 0           |

### USB Host Transmit Length Register (UH\_TX\_LEN):

| Bit   | Name      | Access | Description                                                  | Reset value |
|-------|-----------|--------|--------------------------------------------------------------|-------------|
| [7:0] | UH TX LEN | RW     | Set the number of bytes of data that the sending endpoint of | vyh         |
| [7:0] | UH_IA_LEN | κw     | the USB host is ready to send                                | xxh         |

USB Host Endpoint Mode Control Register (UH\_EP\_MOD):

| Bit   | Name                | Access | Description                                                                                                                                     | Reset value |
|-------|---------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 7     | Reserved            | RO     | Reserved                                                                                                                                        | 0           |
| 6     | bUH_EP_TX_E<br>N    | RW     | <ul><li>0: Disable USB host to transmit data from endpoint;</li><li>1: Enable USB host to transmit data from endpoint (SETUP/OUT).</li></ul>    | 0           |
| 5     | Reserved            | RO     | Reserved                                                                                                                                        | 0           |
| 4     | bUH_EP_TBUF<br>_MOD | RW     | USB host transmit endpoint data buffer mode control bit                                                                                         | 0           |
| 3     | bUH_EP_RX_E<br>N    | RO     | <ul><li>0: Disable USB host receiver endpoint to receive data (IN)</li><li>1: Enable USB host receiver endpoint to receive data (IN).</li></ul> | 0           |
| [2:1] | Reserved            | RO     | Reserved                                                                                                                                        | 00b         |
| 0     | bUH_EP_RBUF<br>_MOD | RW     | USB host receives endpoint data buffer mode control bit                                                                                         | 0           |

The data buffer mode of the USB host sending endpoint is controlled by the combination of bUH\_EP\_TX\_EN and bUH\_EP\_TBUF\_MOD, see the following table.

| bUH_EP_TX_EN | bUH_EP_TBUF_MOD | Structure description: UH_TX_DMA as the starting address |
|--------------|-----------------|----------------------------------------------------------|
| 0            | Х               | Endpoint disabled, no UH_TX_DMA buffer used              |
| 1            | 0               | Single 64-byte transmit buffer (SETUP/OUT)               |
|              |                 | Double 64-byte send buffer, selected by bUH_T_TOG:       |
| 1            | 1               | Select the first 64-byte buffer when bUH_T_TOG=0;        |
|              |                 | Select the last 64-byte buffer when bUH_T_TOG=1.         |

| Table | 16.4.2 | Host sen   | d buffer | mode |
|-------|--------|------------|----------|------|
| ruore | 10.1.2 | 11050 5010 | a build  | moue |

The combination of bUH\_EP\_RX\_EN and bUH\_EP\_RBUF\_MOD controls the USB host to receive the endpoint data buffer mode, as shown in the following table.

| Table 16.4.3 Host re | eceive buffer mod | e |
|----------------------|-------------------|---|
|----------------------|-------------------|---|

| bUH_EP_RX_EN | bUH_EP_RBUF_MOD | Structure description: UH_RX_DMA as the starting address |
|--------------|-----------------|----------------------------------------------------------|
| 0            | Х               | Endpoint disabled, no UH_RX_DMA buffer used              |
| 1            | 0               | Single 64-byte receive buffer (IN)                       |
|              |                 | Double 64-byte send buffer, selected by bUH_R_TOG:       |
| 1            | 1               | Select the first 64-byte buffer when bUH_R_TOG=0;        |
|              |                 | Select the last 64-byte buffer when bUH_R_TOG=1.         |

#### USB Host Receive Buffer Start Address (UH\_RX\_DMA):

| Bit   | Name        | Access | Description                                                                                                                                                   | Reset value |
|-------|-------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [7:0] | UH_RX_DMA_H | RW     | The USB host receives high bytes of the starting address<br>of the buffer, which is valid only for the lower 3 bits and<br>is fixed at 0 for the high 5 bits. | 0xh         |
| [7:0] | UH_RX_DMA_L | RW     | USB host receives buffer starting address low byte                                                                                                            | xxh         |

#### USB Host Transmit Buffer Start Address (UH\_TX\_DMA):

| ĺ | Bit   | Name        | Access | Description                                                                                                                                        | Reset value |
|---|-------|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|   | [7:0] | UH_TX_DMA_H | RW     | The starting address of the USB host transmitting buffer is<br>high bytes, valid only for the lower 3 bits, and fixed at 0<br>for the high 5 bits. | 0xh         |
| ł | [7.0] |             | DW     |                                                                                                                                                    | 1           |
|   | [7:0] | UH_TX_DMA_L | RW     | USB host transmit buffer start address low byte                                                                                                    | xxh         |

# **17.** Parameters

# **17.1 Absolute Maximum Ratings**

(Critical or exceeding the absolute maximum will likely cause the chip to operate improperly or even be damaged.)

| Name  |                                                                         | Min.                        | Max. | Unit |    |
|-------|-------------------------------------------------------------------------|-----------------------------|------|------|----|
|       | Ambient                                                                 | Fsys<40MHz                  | -40  | 85   | °C |
| TA    | temperature<br>during operation                                         | For custom chips Fsys=48MHz | -20  | 70   | °C |
| TAROM | Ambient temperature for Flash-ROM/EEPROM erase operations (recommended) |                             | -20  | 85   | °C |

| TS    | Ambient temperature for storage                           | -55  | 125     | °C |
|-------|-----------------------------------------------------------|------|---------|----|
| VDD   | Supply voltage (VDD is connected to power, GND to ground) | -0.4 | 7.0     | V  |
| V33   | Internal USB supply voltage                               | -0.4 | VDD+0.4 | V  |
| VIO   | Voltage on input/output pins                              | -0.4 | VDD+0.4 | V  |
| VIOU  | Voltage on UDP/UDM pin                                    | -0.4 | V33+0.4 | V  |
| VIOHV | Voltage on P5.5/HVOD pin                                  | -0.4 | 13      | V  |

# **17.2 Electrical Characteristics (5V)**

(Test conditions: TA=25°C, VDD=5V, Fsys=12MHz)

| Name     | Parameter descri                                    | ption                                                | Min.    | Тур. | Max. | Unit |
|----------|-----------------------------------------------------|------------------------------------------------------|---------|------|------|------|
| VDD5     | VDD supply voltage                                  | V33 is only<br>connected to an<br>external capacitor | 3.7     | 5    | 6.5  | v    |
|          | Internal LDO output voltage                         | TA=-15~65°C                                          | 3.23    | 3.3  | 3.37 | V    |
| V33      | (Automatically shorted to VDD during sleep)         | TA=-40~85°C                                          | 3.2     | 3.3  | 3.4  | V    |
| ICC24M5  | Total supply current when                           | Fsys=24MHz                                           |         | 4.4  |      | mA   |
| ICC12M5  | Total supply current when                           | Fsys=12MHz                                           |         | 3.0  |      | mA   |
| ICC750K5 | Total supply current when                           | Fsys=750KHz                                          |         | 1.6  |      | mA   |
| ISLP5    | Total supply current after star                     | ndby/normal sleep                                    |         | 1.1  | 1.5  | mA   |
| ISLP5L   | Total supply current after pov<br>bLDO_3V3_OFF=1, L |                                                      | 4       | 20   | uA   |      |
| IADC5    | ADC operating c                                     |                                                      | 200     | 800  | uA   |      |
| ICMP5    | CMP operating c                                     |                                                      | 100     | 500  | uA   |      |
| ITKEY5   | Touch-key capacitor cha                             | 35                                                   | 50      | 70   | uA   |      |
| VIL5     | Input low level ve                                  | 0                                                    |         | 1.2  | V    |      |
| VIH5     | Input high level v                                  | 2.4                                                  |         | VDD  | V    |      |
| VOL5     | Output low level voltage                            | e (I <sub>IL</sub> =15mA)                            |         |      | 0.4  | V    |
| VOH5     | Output high level voltag                            | e (I <sub>OH</sub> =6mA)                             | VDD-0.4 |      |      | V    |
| VOH5U    | DP/UDM high level output v                          | oltage (I <sub>OH</sub> =8mA)                        | V33-0.4 |      |      | V    |
| VHVOD    | Voltage on P5.5/HVOD pin (impedance)                | 0                                                    |         | 12.6 | V    |      |
| IIN      | The input current without                           | pull-up resistor                                     | -5      | 0    | 5    | uA   |
| IDN5     | The input current with pul                          | -35                                                  | -70     | -140 | uA   |      |
| IUP5     | The input current with pu                           | 35                                                   | 70      | 140  | uA   |      |
| IUP5X    | The input current with pull-up<br>to high           | 250                                                  | 400     | 600  | uA   |      |
| Rsw5     | On-resistance of analogue swi<br>such as ADC        | 500                                                  | 700     | 1350 | Ω    |      |
| Vpot     | Threshold voltage for po                            | ower-on reset                                        | 2.3     | 4.0  | 4.6  | V    |

# **17.3 Electrical Characteristics (3.3V)**

(Test conditions: TA=25°C, VDD=V33=3.3V, Fsys=12MHz)

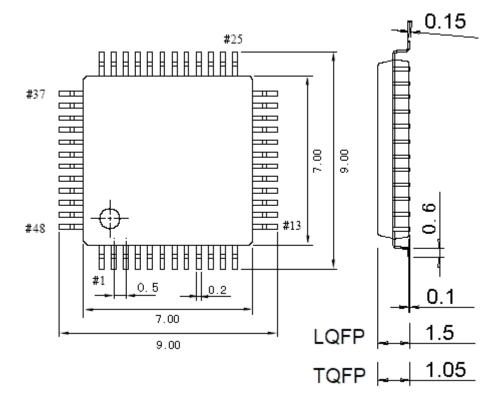
| Name     | Р                                                           | arameter description                                        | Min.    | Тур. | Max. | Unit |
|----------|-------------------------------------------------------------|-------------------------------------------------------------|---------|------|------|------|
| VDD1     | V33 is shorted to VDD, withVDD supplyUSB enabled            |                                                             | 3.0     | 3.3  | 3.6  | V    |
| VDD3     | voltage                                                     | V33 is shorted to VDD, with<br>USB disabled                 | 2.7     | 3.3  | 3.6  | V    |
| ICC24M3  | Total suppl                                                 | y current when Fsys=24MHz                                   |         | 4.4  |      | mA   |
| ICC12M3  | Total suppl                                                 | y current when Fsys=12MHz                                   |         | 3.0  |      | mA   |
| ICC750K3 | Total suppl                                                 | y current when Fsys=750KHz                                  |         | 1.6  |      | mA   |
| ISLP3    | Total supply c                                              | urrent after standby/normal sleep                           |         | 1.1  | 1.5  | mA   |
| ISLP3L   |                                                             | urrent after power off/deep sleep<br>V3_OFF=1, LDO disabled |         | 3    | 16   | uA   |
| IADC3    | ADC operating current                                       |                                                             |         | 180  | 700  | uA   |
| ICMP3    | Cl                                                          | MP operating current                                        |         | 70   | 300  | uA   |
| ITKEY3   | Touch-key capacitor charging current                        |                                                             | 35      | 50   | 70   | uA   |
| VIL3     | Input low level voltage                                     |                                                             | 0       |      | 0.8  | V    |
| VIH3     | Input high level voltage                                    |                                                             | 1.9     |      | VDD  | V    |
| VOL3     | Output lo                                                   | w level voltage (I <sub>IL</sub> =10mA)                     |         |      | 0.4  | V    |
| VOH3     | Output hi                                                   | gh level voltage (I <sub>OH</sub> =4mA)                     | VDD-0.4 |      |      | V    |
| VOH3U    | DP/UDM high                                                 | n level output voltage (I <sub>OH</sub> =8mA)               | V33-0.4 |      |      | V    |
| VHVOD    | Voltage on P5                                               | 5.5/HVOD pin (not output / high impedance)                  | 0       |      | 12.6 | V    |
| IIN      | The input c                                                 | urrent without pull-up resistor                             | -5      | 0    | 5    | uA   |
| IDN3     | The input c                                                 | urrent with pull-down resistor                              | -15     | -30  | -60  | uA   |
| IUP3     | The input current with pull-up resistor                     |                                                             | 15      | 30   | 60   | uA   |
| IUP3X    | The input current with pull-up resistor from low to high    |                                                             | 100     | 170  | 250  | uA   |
| Rsw3     | On-resistance of analogue switches for modules such as ADCs |                                                             | 600     | 1000 | 2500 | Ω    |
| Vpot     | Threshold                                                   | d voltage for power-on reset                                | 2.3     | 2.7  | 3.0  | V    |

# **17.4 Timing Parameters**

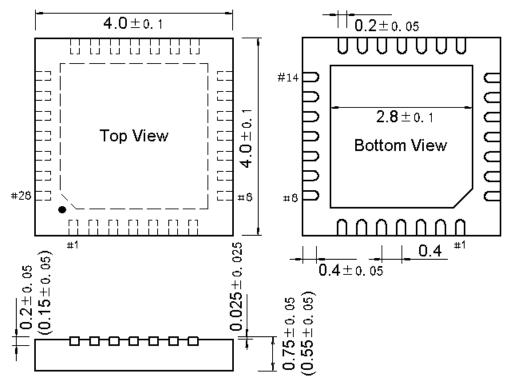
# (Test conditions: TA=25°C, VDD=5V or VDD=V33=3.3V, Fsys=12MHz)

| Name  | Parameter des                                             | scription   | Min.  | Тур. | Max.  | Unit |
|-------|-----------------------------------------------------------|-------------|-------|------|-------|------|
| Fxt   | t External crystal frequency or XI input clock frequency  |             | 6     | 24   | 24    | MHz  |
|       | Internal clock frequency                                  | TA=-15~65°C | 23.52 | 24   | 24.48 | MHz  |
| Fosc  | after calibration when VDD>=3V                            | TA=-40~85°C | 23.38 | 24   | 24.72 | MHz  |
| Fosc3 | Internal clock frequency after calibration<br>when VDD<3V |             | 23.1  | 24   | 24.9  | MHz  |
| Fpll  | PLL frequency after internal frequency<br>doubling        |             | 24    | 96   | 96    | MHz  |

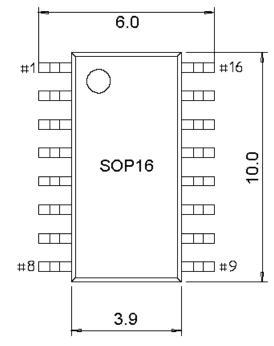
| E 14   | USB sampling clock frequency, with USB host function enabled        | 47.98 | 48                                     | 48.02 | MHz |  |
|--------|---------------------------------------------------------------------|-------|----------------------------------------|-------|-----|--|
| Fusb4x | USB sampling clock frequency, with USB device function enabled      | 47.04 | 48                                     | 48.96 | MHz |  |
| E      | System clock frequency (VDD>=3V)                                    | 0.1   | 12                                     | 40    | MHz |  |
| Fsys   | System clock frequency (VDD<3V)                                     | 0.1   | 12                                     | 24    | MHz |  |
| Tpor   | por Power on reset delay                                            |       | 11                                     | 15    | mS  |  |
| Trst   | RST External input valid reset signal width                         | 70    |                                        |       | nS  |  |
| Trdl   | Trdl   Thermal reset delay                                          |       | 30                                     | 50    | uS  |  |
| Twdc   | Twdc Formula for calculating watchdog overflow period/timing period |       | 131072 * ( 0x100 - WDOG_COUNT ) / Fsys |       |     |  |
| T      | Detect USB auto hang time in USB host<br>mode                       | 2     | 3                                      | 4     | mS  |  |
| Tusp   | Detect USB auto hang time in USB device<br>mode                     | 4     | 5                                      | 6     | mS  |  |
| Twaksb | ksb Time to wake up from standby/normal sleep                       |       | 0.8                                    | 5     | uS  |  |
| Twakdp | Twakdp Time to wake up from power down/deep sleep                   |       | 200                                    | 1000  | uS  |  |

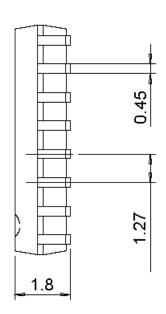

# **17.5 Other Parameters**

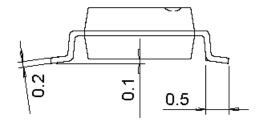
(Test conditions: TA=25°C, VDD=4.5V~5.5V or VDD=V33=3.0V~3.6V)


| Name  | Parameter description                                     | Min. | Тур.                      | Max. | Unit  |
|-------|-----------------------------------------------------------|------|---------------------------|------|-------|
| RTS   | Measurement range of TS                                   | -40  |                           | 90   | °C    |
| ATSC  | ATSC Measurement error of TS after software calibration   |      | ±9                        |      | °C    |
| CTSV  | SV Sensitivity of TS (voltage/temperature coefficient)    |      | 5                         | 6    | mV/°C |
| TERPG | Single erase/write operation time of Flash-<br>ROM/EEPROM | 2    | 5                         | 8    | mS    |
| NEPCE | Erase/write cycle endurance of Flash-<br>ROM/EEPROM       | 10K  | Sampling<br>value<br>100K |      | times |
| TDR   | Data retention capability of Flash-<br>ROM/EEPROM         | 10   |                           |      | years |
| VESD  | ESD voltage tolerance on I/O input or output pins         | 4K   | Sampling<br>value<br>8K   |      | v     |

# 18. Package Information

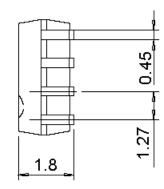

# 18.1 LQFP48-7\*7

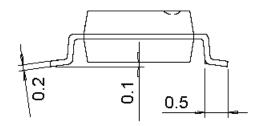




18.2 QFN28-4\*4




### 18.3 SOP16-150mil






# 18.4 SOP8-150mil







# **19. Revision History**

| Version | Date       | Description                                                                                                                                                                                                    |
|---------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V0.99   | 2017.09.27 | First edition release                                                                                                                                                                                          |
| V1.0    | 2018.03.07 | Official edition release                                                                                                                                                                                       |
| V1.1    | 2018.11.13 | Modify A_INV description, delete routine file name, modify<br>VDD3, add INTX                                                                                                                                   |
| V1.2    | 2019.05.29 | The register is renamed POWER_CFG. It is recommended to turn<br>off the global interrupt during sleep, indicating that V33 will be<br>automatically short to VDD during sleep, adding package size.            |
| V1.3    | 2019.12.20 | Modify clerical errors 15.4 (5), correcting clerical errors 16.4<br>UH_TX_DMA                                                                                                                                  |
| V1.4    | 2020.06.26 | Modify section 16.3, fine-tune some parameters of section 17.2<br>and section 17.3                                                                                                                             |
| V1.5    | 2020.11.12 | Add CH548N package form                                                                                                                                                                                        |
| V1.6    | 2021.10.15 | Limit the main frequency to no more than 48MHz, remind USB that there is no series resistance outside the pin.                                                                                                 |
| V1.7    | 2022.01.28 | Bit clear expression optimization: direct bit writing 0 clearing or register corresponding bit writing 1 clearing 0                                                                                            |
| V1.8    | 2023.05.26 | Fine-tune the parameters such as 17-knot current, keep the<br>48MHz main frequency for new product design, and suggest that<br>MASK_ULLDO_VOL should be adjusted during deep sleep<br>under 3.3V power supply. |
|         |            |                                                                                                                                                                                                                |